
 
 

 

  

Abstract— Recently, novel algorithms of Support Vector 
Regression and Neural Networks have received increasing 
attention in time series prediction. While they offer attractive 
theoretical properties, they have demonstrated only mixed 
results within real world application domains of particular 
time series structures and patterns. Commonly, time series are 
composed of a combination of regular patterns such as levels, 
trends and seasonal variations. Thus, the capability of novel 
methods to predict basic time series patterns is of particular 
relevance in evaluating their initial contribution to forecasting. 
This paper investigates the accuracy of competing forecasting 
methods of NN and SVR through an exhaustive empirical 
comparison of alternatively tuned candidate models on 36 
artificial time series. Results obtained show that SVR and NN 
provide comparative accuracy and robustly outperform 
statistical methods on selected time series patterns. 

I. INTRODUCTION 
upport Vector regression (SVR) and artificial neural 
networks (NN) have found increasing consideration in 

forecasting theory, leading to successful applications in time 
series and explanatory forecasting in various application 
domains, including business and management science [1, 2]. 
Methods form computational intelligence promise attractive 
features to business forecasting, being data driven learning 
machines, permitting universal approximation of arbitrary 
linear or nonlinear functions from examples without a priori 
assumptions on the model structure, often outperforming 
conventional statistical approaches of ARMA-, ARIMA- or 
exponential smoothing-methods [3]. As a consequence, 
significant effort has been invested in developing 
forecasting methods from computational intelligence [4] to 
reduce forecasting error. 

Despite their theoretical capabilities, NN as SVR are not 
an established forecasting method in business practice. 
Recently, substantial theoretical criticism of NN has raised 
questions to their ability to forecast even simple time series 
patterns of seasonality or trends without prior data 
preprocessing [5]. While all novel methods must ultimately 
be evaluated in an objective experiment using a number of 
empirical time series, adequate error measures and multiple 
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origins of evaluation [6], the fundamental questions to their 
ability to approximate and generalise basic time series 
patterns must be evaluated beforehand. Time series can 
generally be characterized by the combination of basic 
regular patterns: level, trend, season and residual errors. For 
trend, a variety of linear, progressive, degressive and 
regressive patterns are feasible. For seasonality, an additive 
or multiplicative combination with level and trend further 
determines the shape of the empirical time series. 
Consequently, we evaluate SVR and NN using a consistent 
methodology [3] in comparison to a benchmark statistical 
forecasting expert system using Exponential Smoothing and 
ARIMA-models on a set of artificially created time series 
derived from previous publications. We evaluate the 
comparative forecasting accuracy of each method on 
alternative error measures to avoid evaluation biases in order 
to reflect their ability of learning and forecasting 12 
fundamental time series patterns relevant to empirical 
forecasting tasks under 3 levels of increasing random noise. 
In total, we evaluate 500,000 NN and 2,900,000 SVR 
candidate models for their predictive accuracy. 

This paper is organized as follows: first, we provide a 
brief introduction to SVR and NN in forecasting time series. 
Section three provides an overview of the experimental 
design including the artificially generated time series. This is 
followed by the experimental results and their discussion. 
Conclusions are given in section 4. 

II. COMPUTATIONAL INTELLIGENCE FOR FORECASTING 

A. Multilayer Perceptrons  
NNs represent a class of mathematical models originally 
motivated by the information processing in biological neural 
systems [7-10]. They promise a number of attractive features 
of arbitrary input–output mapping from examples without a 
priori assumptions on the model structure, being a semi-
parametric, data driven universal approximator, which make 
them well suited for time series prediction tasks. 
Forecasting with non-recurrent NNs may encompass 
prediction of a dependent variable ŷ  from lagged 
realizations of the predictor variable t ny − , 1 or i explanatory 
variables ix of metric, ordinal or nominal scale as well as 
lagged realizations thereof, ,i t nx − . Therefore, NNs offer 
large degrees of freedom towards the forecasting design, 
permitting explanatory or causal forecasting through 

relationship of the form ( )1 2
ˆ , ,..., zy f x x x= , as well a 
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( )1 2
ˆ , ,..., zy f x x x= , as well a general transfer function 

models and simple time series prediction. Following, we 
present a brief introduction to modelling ANNs for time 
series prediction; a general discussion is given in [11, 12]. 
Forecasting time series with ANN is generally based on 
modeling the network in analogy to an non-linear 
autoregressive AR(p) model [1, 13]. At a point in time t, a 
one-step ahead forecast 

1ˆty +
 is computed using p=n 

observations 
1 1, , ,t t t ny y y− − +…  from n preceding points in 

time t, t-1, t-2, …, t-n+1, with n denoting the number of 
input units of the ANN. This models a time series prediction 
of the form  

( )1 1 1ˆ , ,...,t t t t ny f y y y+ − − += . (1) 
In this study, a special class of NN, the well researched 
multilayer Perceptron (MLP) is applied. MLPs are hetero-
associative, feed forward neural network which are typically 
composed of several layers of nodes with nonlinear signal 
processing [14] and trained by a derivative of the back 
propagation algorithm [14]. Applying a standard summation 
as the input unction and using an arbitrary nonlinear 
activation a MLP with a single layer of hidden nodes may be 
written as [15] 

( )( )∑ ∑ −++=
h i jtihchacthocoactt ywwfwwfŷ  . (2) 

The architecture of a MLP is displayed in figure 1.  
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Fig. 1.  Autoregressive MLP application to time series forecasting with a 

MLP of arbitrary topology, using n input neurons for observations in t, t-1, 
t-2, …, t-n-1, m hidden units, h output units for time periods t+1, t+2, …, 
t+h and a two layers of trainable weights. The bias node is not displayed. 

For a time series forecasting problem, training data is 
provided in form of vectors of n=p time lagged observations 
[1, 8] in form of a sliding window over the time series 
observations [16]. The task of the MLP is to model the 
underlying generator of the data during training, so that a 
valid forecast is made when the trained ANN network is 
subsequently presented with a new input vector value [5].  

Although the network paradigm of MLP offers extensive 
degrees of freedom in modeling for prediction tasks, it must 
be noted that they do not utilize recurrent feedback of their 
own output or previous errors and are therefore incapable of 
modeling moving average processes required to approximate 
data generating process of seasonal ARMA or ARIMA 

(p,d,q)(P,D,Q)s structure. For topologies without hidden 
nonlinear nodes, MLPs are equivalent to a linear AR(p) 
models [9]. For a detailed discussion of these issues and the 
ability of NN to forecast univariate time series see [1]. 

B. Support Vector Regression 
Recently, SVR has been applied to time series prediction. 
SVR represents another method from computational 
intelligence related to NN and methodically based upon the 
statistical learning theory developed by Vapnik [2, 17, 18]. 
In this study we consider the ε -SVR, which approximates a 
function ( )f x  to provide a maximum of ε-deviation from 
all target values 

iy  in the training dataset 
( ) ( )( ) ( )1 1, ,..., ,y y Y⊆ ×x x X A

A A
 and is as flat as possible [19-

21]. Unlike the NN, the training problem of the SVR is a 
convex optimization problem without local minima [2] For a 
simple linear problem this function is of the form 

( ) ,f x b= +w x  with ℜ∈∈ b,Xw  and ,w x  denotes the 
dot product in the space of the input patterns x [17, 19, 22]. 
The support vectors are those data points used to describe 
the searched function [23]. In removing those training 
patterns which are not support vectors, the solution is 
unchanged and hence a fast method for validation is 
available when the support vectors are sparse [2, 24]. As 
noise exists, it is useful to work with a soft margin, as 
known from Support Vector Machines (SVM). This is 
realized by slack variables 0, ≥−+

ii ξξ  which extend the 
mathematical formulation of the convex optimization 
problem [2], 

( )2

1

1
2 i ii

C ξ ξ+ −
=

+ +∑w A   , (3) 

which has to be minimized by 2 =w w,w  with the 
constraints ( ) i ib y ε ξ −⋅ + − = +iw x , ( ) ++≤−⋅− ii by ξεixw  
to ensure flatness [23, 25]. The constant C determines the 
trade-off between flatness and the amount of outliers of the 
ε -tube, which is handled in this study with the ε -intensive  
loss function [26] 

0
:

if
otherwiseε

ξ ε
ξ

ξ ε
⎧ ≤⎪= ⎨ −⎪⎩

  . (4) 

For this particular cost function the Lagrange multipliers are 
sparse [2, 24] and only data points outside the ε -tube 
contribute to costs. To assure that the training data appear in 
the form of dot products between the vectors and to better 
handle the constraints, the problem is transformed to a 
Lagrangian formulation [2]: 

( ) ( ) ( )

( )( )

( )( )

2*

1 1

1
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(5) 

This represents the precondition for nonlinear problems. 
Here L is the Lagrangian function and ±

iη  and ±
iα  are 

positive and the Lagrange multipliers. To receive the dual 
optimization problem,  
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( )( )( )

( ) ( )
, 1

1 1

1
2

max!

i i i j
i j

i i i i i
i i

y

α α α α

ε α α α α

+ − + −

=

+ − + −

= =

− − − ⋅

− + + − →

∑

∑ ∑

i jx x
A

A A

  , 
(6) 

with subject to ( )
1

0i i
i

α α+ −

=

− =∑
A

 and [ ], 0,i i Cα α+ − ∈ , the 
partial derivatives of L with respect to the primal variables 

b,w and ±
iξ  are vanished and substituted to the primal 

function [2]. With the condition 0
i

i iL C
ξ

α η+
+ +∂ = − − =  and 

0
i

i iL C
ξ

α η−
− −∂ = − − =  the dual variables ±

iξ  can be 
eliminated and thus the dual optimization problem 
reformulated as Support Vector (SV) expansion 

( ) ( )( )
1

i i i j
i

f bα α+ −

=

= − ⋅ +∑ ix x x
A

, which is a linear combination 
of the training patterns[27]. The coefficients ±

íα are the 
parameters to be adjusted by training and ix  are the training 
patterns. The choice of the bias b gives rise to several 
variants [28] In this study the Karush–Kuhn–Tucker (KKT) 
conditions are used [2, 24, 26]. This method base on the idea 
that the variables ±

iα , for those the prediction error can be 
determined are uniquely. This means for the ε -intensive 
case, to select the data dots on the margin as here the exact 
value of the prediction error is known and calculate for the 
according data dot the threshold b [26]. To guarantee 
stability, b is calculated for all dots on the margin and the 
average is used as threshold [26]. 

Nonlinearity can be created by nonlinear mapping φ  the 
data into a high dimensional feature space F  and do linear 
regression in this space, thus this corresponds to nonlinear 
regression in a low dimensional input space [2]. As mapping 
all data to space can easily become computationally 
infeasible for polynomial features of higher order and higher 
dimensionality [23]. To avoid this, kernel functions 

( ) ( ) ( )',', xxxx φφ=k  are used, that enable operations to be 
performed in the input space rather than the potentially high 
dimensional feature space, hence the inner product does not 
need to be evaluated in the feature space[29]. All kernel 
functions, those correspond to the inner product of some 
feature space, must satisfy Mercer’s condition. This study 
uses the Gausian Radial Basis Function (RBF)  

( ) ( ) 0,'exp', 2 >−−= γγ xxxxk   . (7) 
which represents the most commonly used kernel for 
regression problems [2, 26] and corresponds to minimizing 
the specific cost function with a regularization operator and 
satisfies the Mercer conditions, as any symmetric kernel 
function [23, 26, 28]. Finally in this study the quadratic 
programming problem is defined as minimize  

( )( ) ( )
( ) ( )∑∑

∑
=

−+
=

−+

=
−+−+

−++−

−−
AA

A

11

1,
,

2
1

i iiii ii

ji jjii

y

k

ααααε

αααα ji xx   , (8) 

with subject to 
1

0i ii
α α+ −

=
− =∑ A , [ ]Cii ,0, ∈−+ αα  and 

1,...,i = A  [26]. As the RBF kernel function is used in the 
experiments, the output weights as well as the RBF centers 
and variances are adjusted by back-propagation [30]. 

III. EXPERIMENTAL DESIGN 

A. Experimental Data 
In order to evaluate the ability of SVR and MLP to 

forecast a benchmark subset of common time series patterns, 
we develop a set of archetype time series derived from 
decomposing monthly retail sales in [16]. Time series 
patterns are composed of overlaying components of a 
general level L of the time series, seasonality S within a 
calendar year, trends T in the form of long term level shifts 
and random noise E as a remaining error component. 
Through combination of the regular patterns of linear, 
progressive, degressive or regressive trends with additive or 
multiplicative seasonality we derive 12 artificial time series 
following the patterns motivated from Pegel’s classification 
framework, later extended by Gardner to incorporate 
degressive trends [31]. In particular, we create time series 
following a stationary pattern L+E denoted as (E), additive 
seasonality without trend L+SA+E (SA), multiplicative 
seasonality without trend but increasing with time 
L+SM*t+E (SM), linear trend L+TL+E (TL), linear trend with  
 

 No Trend (E) Linear Trend (TL) Progressive Trend (TP) Degressive Trend (TD)
No  
Seasonality 
(E) 

    
Additive  
Seasonality 
(SA) 

    
Multiplicative 
Seasonality 
(SM) 

    
Fig. 2.  Basic time series patterns of artificial time derived from the Pegels- and Gardner-classification,  

combining Level, Trend and Seasonality with a medium level of additive noise.
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additive seasonality L+TL+SA+E (TLSA) and linear trend 
with multiplicative seasonality depending on the level of the 
time series L+TL*SM+E (TLSM). The functional form of 
these basic time series patterns is visualized in the left six 
quadrants of Fig. 1. In addition, we model similar 
combinations of degressive and progressive trend (TP) with 
additive and multiplicative seasonality to TDSA, TDSM, TPSA 
and TPSM displayed in the six right quadrants of Fig.1. 
Each time series is overlaid with tree levels of low, medium 
and high additive random noise 2 1, 25, 100σ =  following a 
Gaussian distribution ( )20,N σ , thereby creating a total of 
36 time series of 228 monthly observations [8]. The time 
series may be distinguished in linear versus nonlinear 
patterns, with the patterns of E, TL, SA and TL+SA relating to 
linear model forms and all other combinations to nonlinear 
models. Consequently, we can subsequently analyze the 
experimental results of forecasting accuracy of competing 
methods using multiple hypotheses of varying noise and 
different time series structure.  

Each time series is split into training set, validation set 
and test set using a proportion of [60%, 20%, 20%] in 
accordance with [32]. As the size of the test set affects the 
validity of the forecasting results [33], but very long time 
series often do not reflect empirical data availability, a test 
set size of 48 observations data serves as a sufficient and 
acceptable trade-off. For the statistical benchmark methods, 
which do not require the use of a validation set, both 
training and validation set are used for parameterization, 
with an identical out-of-sample test set used for all methods 

B. General Experimental Setup 
We determine a number of identical input variables for 

both NN and SVR. Each time series may be characterized by 
a different autoregressive lag structure and require a 
different number of input nodes. As a consequence, we 
identified suitable lag-structures for inclusion in the input 
vector following the approach by Lattermacher and Fuller 
using the linear autocorrelation function (ACF) and partial 
autocorrelation functions (PACF) as is common practice in 
ARIMA-modeling [16, 34]. In particular, we generate an 
input vector length using the last statistically significant 
PACF lag of a time series successively differenced until 
stationary [8, 35].  

All data for NN and SVR was linearly scaled to avoid 
numerical difficulties and to speed up the training process 
[3, 8], using  

( )
( )

( )minmax

min
minmaxmin

tt

tt
t xx

xx
AFAFAFz

−

−
⋅−+=  , (9) 

with zt the scaled data used for training and xt max and xt min 
the maximum or minimum observed value on the training 
and validation set of each time series [3]. In order to avoid 
saturation effects close to the asymptotic limits of nonlinear 
activation function [-1;1] through non-stationary time series 
with consistent trends or seasonality, we applied an 
additional 50% headroom AFmax=0,5 and AFmin=-0.5, 
effectively scaling the data into the interval [-0.5; 0.5].  

As the relative performance of each forecasting method is 
influenced by the selection of the evaluation criteria [16, 36, 
37], we evaluate the forecasting accuracy using a set of five 
established accuracy measures: mean absolute error (MAE), 
mean absolute percentage error (MAPE), median absolute 
percentage error (MdAPE), Root mean squared error 
(RMSE) and Theil’s U-statistic (TU), which are discussed in 
detail in [16]. Although RMSE and MAPE provide a strong 
bias in over-penalizing large deviations or sensitivity to the 
scale of the errors, their information is provided to allow 
comparisons with alternative studies frequently applying 
these inefficient error statistics. The TU statistic provides a 
relative accuracy measure in comparison to the accuracy of a 
naïve forecast using the last observation as a prediction, with 
values TU<1 demonstrating superior performance then a 
naïve method and values TU> 1 indicating inferior accuracy 
[31]. All error measures are calculated as mean errors across 
an out-of-sample test set. In addition, we calculate ordinal 
performance metrics. Each forecasting method is ranked by 
each error measure, with a 1 indicating highest performance 
and a 3 documenting the lowest. The means of these ranks 
across all time series are calculated to demonstrate relative 
performance robust to influences from outliers. The use of 
ordinal error measures based upon rank-information omits 
information on the distance between individual methods. As 
a consequence, we propose an additional distance measure, 
with the worst error measure setting an origin of zero 
percent and the optimum of e=0 setting 100%. In relation to 
this, the percentage distances of the other two methods were 
calculated. Thus, the higher the percentage of the distance 
the closer the method performs to the optimum [3]. These 
distances may be accumulated across different error 
measures and time series in order to further analyze the 
differences in accuracy of the forecasting methods. 

C. Setup of Forecasting Models 
The accuracy of each forecasting method is determined by 
its specific architecture. Both NN [2] and SVR [2] offer a 
large amount of degrees of freedom in customizing and 
parameterising models to a particular forecasting task. Thus 
we need to evaluate a number of candidate models to 
determine a suitable MLP and SVR architecture.  

For the ε -SVR with RBF kernel function, the model 
accuracy depends on the parameters ε , C andγ  [35]. We 
evaluate a variety of parameter combinations through a 
systematic grid search with exponentially growing 
sequences as proposed by Hsu [28, 38]. First, a coarse grid 
of C=[2-5; 2-4.5, …, 215], γ=[2-23.0, 2-22.5, …, 20] and 
ε=[2-12, 2-11.5, …, 23] is used. The parameter combination 
with highest validation accuracy is picked and its region 
successively analyzed applying a refined grid using an 
exponential reduced sequence of step sizes from 0.5, 0.05, 
0.005 unto 0.0005. As a consequence, the initial grid 
evaluates 59,737 parameter combinations and each 
successive refined grid a further 8,000 parameter 
combinations. Using this shrinking technique we aim to 
reduce the total training time in considering only a subset of 
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free variables [39]. Of all SVR candidates, the one with the 
lowest error on the validation dataset was selected. 

In order to determine an effective MLP topology, a set of 
70 different NN topologies using 240 different parameter 
combinations is evaluated, resulting in 16,800 different 
MLP candidate models for each time series. A maximum of 
30 nodes are distributed across a maximum of 3 layers of 
hidden nodes, evaluating every combination of hidden layer  
[1,…,3] and nodes [0,…,30] in steps of 2 nodes, limiting the 
candidates to pyramidal topologies with the number of 
nodes in successive hidden layers equal or smaller to the 
preceding ones in order to limit the design complexity [10, 
32, 40]. The maximum of 30 nodes was set to reflect the 
number of free parameters in relation to the training 
patterns. All predictions are computed as iterative one-step 
ahead predictions t+1, a single output node is used. The 
number of input nodes is determined ex ante through the 
analysis of the autocorrelation structure of each time series, 
resulting in a total of 70 topologies for each successive 
variation of model parameters. For information processing 
within the nodes, the established hyperbolic tangent 
activation function TanH is applied in all hidden nodes [4, 
39] and a linear activation function in the single output node 
[41], using a simple summation as the input function in all 
nodes. To allow for randomized starting points each MLP is 
randomly initialized 20 times using three different 
initializations intervals of  [-0.88;0.88], [-0.55;0.55] and 
[0.22;0.22]. Each MLP candidate is trained for 1000 epochs 
using four different initial learning rates of 
[0.05; 0.35; 0.65; 1] which are reduced by a cooling factor 
of 0.99 after each epoch of presenting all data patterns in the 
training set to the input nodes in random order. During 
training, the NN with the lowest error on the validation set is 
saved, applying early stopping if the MSE on the validation 
set has not decreased for 100 epochs. The MLP candidate 
showing the lowest MSE validation error is selected for 
forecasting. Each MLP was simulated using a NN software 
simulator “Intelligent Forecaster” developed for large scale 

empirical evaluations of NN by the authors.  
To serve as a benchmark, all time series are evaluated 

using an established expert forecasting system ForecastPro, 
which evaluates ARIMA-models and various forms of 
Exponential Smoothing-methods using an automatic model 
selection technique [42], allowing robust prediction of 
stationary, seasonal, trended and trend-seasonal time series 
patterns. The superior performance of the forecasting 
software has been demonstrated sufficiently in 
outperforming other software and human experts in the M3-
competition [35].  

IV. EXPERIMENTAL RESULTS 
The following tables provide the results of the forecasting 
performance of the SVR and NN models in comparison to 
the statistical methods. The time series results are separated 
into patterns of nonlinear trends in Table 1 versus time 
series of linear patterns in Table 2. For each time series, we 
computed a total of 16,800 MLP candidates and 91,737 
SVR candidates, resulting into a total evaluation of 537,600 
NN models and 2,935,584 SVR models to determine 
suitable candidate models for each time series pattern. 
Although results for all error measures are provided, 
information on the relative performance of each method 
should not be derived from the biased error metrics of 
RMSE or MAPE.  

On non-linear time series it is evident that SVR and NN 
significantly outperform the statistical benchmark methods 
applied by ForecastPro on most performance criteria. Both 
methods demonstrate the ability to robustly learn and 
extrapolate all of the provided time series patterns, 
stationary or instationary, without any in data preprocessing 
through detrending or deseasonalisation. Their general 
ability to forecast is documented through a TU significantly 
smaller than 1, indicating higher performance than a Naïve 
forecast and therefore their general applicability in 
forecasting basic time series patterns. 

 
TABLE 1 

OUT OF SAMPLE PERFORMANCE FOR NON LINEAR TIME SERIES ON THREE NOISE LEVELS 
  LOW NOISE LEVEL MEDIUM NOISE LEVEL HIGH NOISE LEVEL 

Type Method MAE MdAPE MAPE TU RMSE MAE MdAPE MAPE TU RMSE MAE MdAPE MAPE TU RMSE 
SVR 0.41 2.64 4.74 0.34 0.52 2.17 13.05 56.39 0.39 2.85 5.01 19.15 65.03 0.42 6.16
MLP 0.43 2.67 5.54 0.36 0.54 2.61 19.63 95.61 0.44 3.24 4.70 24.31 125.04 0.40 5.87TE 
Stat. M. 2.17 4.92 7.18 1.58 2.76 3.95 16.05 49.18 0.69 4.92 5.47 19.32 71.65 0.45 6.81
SVR 0.42 0.16 0.21 0.36 0.54 2.19 0.92 1.08 0.38 2.74 4.09 1.56 1.98 0.36 5.22
MLP 0.50 0.20 0.26 0.42 0.63 2.17 0.87 1.07 0.38 2.76 4.33 1.70 2.16 0.37 5.38TD 
Stat. M. 1.22 0.54 0.58 1.02 1.44 3.30 1.38 1.56 0.55 3.96 4.15 1.60 2.03 0.37 5.32
SVR 0.69 0.22 0.25 0.02 0.85 3.43 1.09 1.23 0.12 4.40 5.29 1.83 2.01 0.17 6.37
MLP 1.17 0.23 0.35 0.05 1.79 3.77 1.18 1.38 0.13 4.70 6.31 1.94 2.32 0.20 7.88TP  

SA Stat. M. 6.18 1.21 1.52 0.23 8.28 10.26 2.45 2.79 0.35 12.80 10.81 2.87 3.13 0.35 13.67
SVR 1.98 0.65 0.86 0.04 3.32 4.84 1.80 1.95 0.09 7.71 6.62 2.87 3.73 0.13 8.83
MLP 2.10 0.71 0.89 0.05 3.50 6.01 2.06 2.42 0.12 9.77 7.20 3.44 3.92 0.14 9.63TP  

SM Stat. M. 6.05 1.55 1.95 0.10 8.85 18.62 3.74 6.25 0.27 24.63 11.19 4.23 4.85 0.19 14.92
SVR 0.90 0.18 26.26 0.04 1.52 2.58 0.49 0.66 0.09 3.29 5.03 1.07 1.26 0.16 6.32
MLP 0.88 0.18 24.81 0.03 1.13 2.88 0.61 0.74 0.10 3.66 5.24 1.15 1.33 0.17 6.54TD  

SA Stat. M. 1.01 0.21 25.55 0.04 1.27 2.45 0.57 0.63 0.08 2.99 4.96 0.96 1.24 0.16 6.29
SVR 0.71 0.27 0.37 0.01 0.94 2.90 1.24 1.45 0.05 3.70 4.47 1.68 2.21 0.08 5.84
MLP 1.26 0.57 0.65 0.02 1.50 3.29 1.38 1.68 0.06 4.12 4.53 1.92 2.23 0.08 5.70TD  

SM Stat. M. 0.98 0.36 0.49 0.02 1.31 2.38 0.96 1.22 0.04 3.03 4.41 1.65 2.21 0.08 5.73
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TABLE 2 
OUT OF SAMPLE PERFORMANCE FOR LINEAR TIME SERIES ON THREE NOISE LEVELS 

  LOW NOISE LEVEL MEDIUM NOISE LEVEL HIGH NOISE LEVEL 
Type Method MAE MdAPE MAPE TU RMSE MAE MdAPE MAPE TU RMSE MAE MdAPE MAPE TU RMSE 

SVR 0.38 24.28 690 0.35 0.48 1.96 43.67 487.84 0.35 2.50 3.80 47.31 428.05 0.33 4.87
MLP 0.38 23.91 830 0.36 0.48 1.95 43.37 449.85 0.34 2.49 3.83 47.93 417.17 0.34 4.94E 
Stat. M. 0.39 25.27 607 0.36 0.49 1.96 44.62 414.20 0.35 2.51 3.81 48.18 154.52 0.33 4.85
SVR 0.42 0.20 0.24 0.36 0.53 2.07 0.98 1.18 0.37 2.70 4.14 1.84 2.30 0.36 5.23
MLP 0.43 0.21 0.25 0.37 0.55 2.17 1.03 1.24 0.38 2.76 4.52 2.08 2.57 0.39 5.60TL 
Stat. M. 0.40 0.18 0.23 0.34 0.50 1.98 0.91 1.12 0.35 2.54 3.86 1.62 2.16 0.34 4.99
SVR 0.41 0.35 0.43 0.02 0.53 2.13 1.92 2.21 0.07 2.68 3.89 2.64 4.23 0.13 5.16
MLP 0.43 0.36 0.44 0.02 0.54 2.17 1.83 2.26 0.08 2.75 4.34 3.49 4.59 0.14 5.52SA 
Stat. M. 0.53 0.46 0.55 0.02 0.67 2.02 1.77 2.09 0.07 2.59 4.02 2.90 4.34 0.14 5.25
SVR 0.58 0.53 0.65 0.01 0.73 2.48 2.29 2.83 0.05 3.03 4.15 3.44 4.95 0.10 5.43
MLP 0.58 0.50 0.64 0.01 0.72 2.52 2.16 2.86 0.05 3.16 4.81 4.18 5.79 0.10 5.95SM 
Stat. M. 0.52 0.42 0.57 0.01 0.70 2.81 2.54 3.05 0.06 3.69 5.11 4.05 6.00 0.11 6.53
SVR 0.56 0.27 0.32 0.02 0.70 2.37 1.21 130.03 0.08 2.98 5.81 2.81 3.23 0.19 7.22
MLP 0.57 0.27 0.32 0.02 0.70 2.39 1.08 132.39 0.08 2.96 5.48 2.67 3.05 0.18 6.83TL  

SA Stat. M. 0.43 0.19 0.24 0.02 0.54 2.10 0.97 117.08 0.07 2.67 4.04 1.60 2.27 0.14 5.27
SVR 0.51 0.23 29.28 0.01 0.66 2.62 1.07 150.12 0.05 3.41 5.20 2.25 297.09 0.10 6.76
MLP 0.50 0.23 28.84 0.01 0.63 2.61 1.15 154.00 0.05 3.36 5.31 2.42 301.56 0.10 6.70TL  

SM Stat. M. 0.43 0.20 24.99 0.01 0.54 2.16 0.98 125.95 0.04 2.76 4.23 1.63 242.72 0.08 5.50
 

SVR slightly outperform MLP on three of the six series 
for all noise levels, with statistical methods outperforming 
SVR and NN on two series with higher noise levels and 
MLPs showing only inconsistent performance. However, the 
differences between SVR and NN performance do not 
appear to be significant, with NNs always providing the 
second best performance across all series. Moreover, SVR 
and NN show robust performance regardless of time series 
pattern, while the statistical benchmark performs worse then 
naïve methods on selected time series. The results are 
largely consistent across error measures, with slight 
inconsistencies only for TE and TD SA patterns of medium 
noise level, showing robustness of the solution. 

While we may conclude that SVR shows great promise in 
forecasting basic nonlinear time series patterns, their 
performance on linear patterns given in Table 2 is not as 
dominant. For linear time series patterns, NN and the 
statistical benchmark methods outperform SVR on all but 
one time series consistently across all error measures. In 
particular for simple linear patterns, the established 
statistical methods of Exponential Smoothing and ARIMA 
outperform both NN and SVR. Again, all methods show 
superior performance to the Naïve method, documenting the 
general ability of all three approaches to forecast all of the 
12 basic time series patterns without data preprocessing 
except a simple scaling technique applying headroom.  

In order to derive more general results, we calculate the 
mean out of sample errors for each method across all time 
series patterns on the three levels of noise in Table 3, using 
only the unbiased error measures of MAE, MdAPE and TU 
with the best performance of a method indicated in bold.  

TABLE 3 
MEAN OUT OF SAMPLE PERFORMANCE ACROSS ALL TIME SERIES PATTERNS  

 Low Noise Medium Noise High Noise 

 MAE MdAPETU MAE MdAPE TU MAE MdAPETU 

SVR 0,66 2,50 0,13 2,65 5,81 0,17 4,79 7,37 0,21
MLP 0,77 2,50 0,14 2,88 6,36 0,18 5,05 8,10 0,22
Stat.M. 1,69 2,96 0,31 4,50 6,41 0,24 5,51 7,55 0,23
 

SVR clearly outperform statistical methods closely 
followed by MLP, although their enhanced performance in 
comparison to MLPs does not prove to be statistically 
different. Interestingly, the differences between forecasting 
methods decrease with an increasing level of noise, 
indicating extended complications in determining patterns.  

A similar picture is derived in averaging the performance 
metrics further across all time series and noise levels in 
Table 4.  

TABLE 4 
MEAN PERFORMANCE ACROSS ALL TIME SERIES AND NOISE LEVELS  

 MAE MdAPE TU 

SVR 2,70 5,23 0,17 
MLP 2,90 5,66 0,18 
Statistical Methods. 3,90 5,64 0,26 
 

Again, the results indicate the preeminent accuracy of 
SVR against statistical methods as well as MLPs. To extend 
this analysis, we compute a distance based accuracy to 
evaluate relative method performance for different noise 
levels and linear versus nonlinear patterns in Fig. 3. 
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Fig. 3.  The distance measure visualizes the difference of the accuracy 

between the single forecasting methods, with noise level 1 denoting low 
noise, level 2 medium noise and level 3 high noise. 

 
The distance measures again indicate that SVR performs 

best on all non linear time series closely followed by NN 
and at a significant distance form the statistical methods. For 
non-linear time series on a low noise level the statistical 
benchmark does not appear since its forecasts were always 
the worst on each evaluation criterion. For linear time series 
the statistical methods perform best, again closely followed 
by the NN. It must be noted, that the level of differences in 
performance between the methods on linear time series is 
much smaller then on the nonlinear time series, in particular 
for noise level one and two. Therefore, the ordinal rank 
based accuracy measures provided in table 3 may suggest a 
slight bias in the evaluation of methods.  

TABLE 3 
ACCUMULATED RELATIVE ORDINAL MEAN RANKS 

Mean Ranks All Noise 
Levels 

Noise 
Level 1 

Noise 
Level 2 

Noise 
Level 3 

Non Linear Time Series 

SVR 1.42 1.07 1.40 1.67

MLP 1.92 1.93 2.27 1.87

Stat. Method 2.66 3.00 2.33 2.47

Linear Time Series 

SVR 2.40 2.23 2.50 2.47

MLP 1.87 2.03 1.70 1.87

Stat. Method 1.73 1.73 1.80 1.67
All Time Series 

SVR 1.91 1.65 1.95 2,07

MLP 1.89 1.98 1.98 1,87

Stat .Method 2.19 2.36 2.06 2,07

 
The ranking illustrate more clearly the ability of SVR to 
predict non linear time series, while their performance 
deteriorates for linear time series. Statistical methods 
perform best on linear time series and worst on nonlinear 
patterns. NN perform second best on both types of time 
series, always coming in close second place also with regard 
to other non-ordinal error measures. In summarizing over all 
time series, NN show the best performance, allowing valid 

and reliable forecasting of linear as well as nonlinear time 
series patterns.  

V. CONCLUSIONS 
We analyze the performance of competing forecasting 
methods of SVR and MLP from computational intelligence 
versus established benchmarks of univariate statistical 
forecasting methods. In order to derive the general ability of 
SVR and MLP to predict the most common time series 
patterns, we combine various forms of seasonal and trended 
time series patterns to create a benchmark dataset of 36 time 
series, consisting of 12 basic patterns overlaid with three 
levels of noise. In order to facilitate future comparisons, all 
time series are published at the website www.neural-
forecasting.com. 

The results are evaluated using five established error 
measures on out-of-sample accuracy. He experiments clearly 
indicate the ability of SVR as well as MLP to robustly 
forecast various forms of stationary, trended, seasonal and 
trend-seasonal time series without prior detrending or 
deseasonalisation of the data. SVR and MLPs demonstrate 
preeminent accuracy in comparison to statistical methods on 
non linear time series patterns. While statistical methods 
outperform SVR and NN on basic linear patterns, the 
differences in accuracy are not substantial. Therefore, SVR 
show a generally superior forecasting performance closely 
followed by MLP on mean accuracy measures, and MLP 
showing a robust forecasting accuracy using an evaluation 
on rank based accuracy measures. 

Similar to other empirical studies, we do not attempt to 
demonstrate a general superiority of a particular time series 
method for all potential forecasting applications and time 
series. However, in the light of recent criticism that NN are 
incapable of forecasting even basic time series patterns, we 
provide a strong indication that MLP as well as SVR may 
indeed be applied successfully for time series prediction of 
various trend-seasonal time series without prior data analysis 
and iterative data preprocessing. Moreover, both SVR and 
MLPs validate their semi-parametric ability to learn an 
adequate model form and the corresponding parameters 
directly from the presented data, avoiding issues of 
conventional model selection of statistical forecasting 
methods. However, this evaluation has certain limitations. 
Even if a substantial variety of SVR parameters and NN 
architectures was evaluated, the evaluation took only a 
single methodology into consideration, which was based 
upon a refined simple grid search and a linearly motivated 
estimation of adequate lag structures. Also, not all potential 
NN architectures, activation functions or SVR kernel 
functions were evaluated. In particular, recurrent NN which 
are theoretically capable of approximating nonlinear AR(p) 
as well as nonlinear ARIMA(p,d,q)-processes should be 
evaluated. It may be possible, that alternative SVR and NN 
models with better forecasting accuracy or robustness exit 
even for the time series in question. In particular, the 
reduced SVR performance on the linear time series may be 
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attributed to the use of an RBF kernel function, which would 
further support the need for extended experimentation.  

For future evaluations we also seek to extend the 
experiments to linear and polynomial kernel functions and to 
analyze the resulting forecasting accuracy with regard to the 
increased complexity of the modeling process. In addition, 
we need to extend our evaluation towards multiple time 
origins trough different sampling proportions, multiple step 
ahead forecasts and different forecasting horizons as well as 
empirical time series of a given application domain, in order 
to assure a valid and reliable evaluation on the ability of 
SVR and MLP to enhance future forecasting research and 
practice. 
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