
 
 

 

  

Abstract— Support Vector Regression (SVR) and artificial 
Neural Networks (NN) promise attractive features for time 
series forecasting. Despite their attractive theoretical 
properties, limited empirical studies using small or unbalanced 
parameter setups yield inconsistent results regarding their 
empirical accuracy. This paper investigates the accuracy of 
different configurations of NN and SVR parameters, paying 
particular attention to the common SVR kernels of polynomial, 
radial basis functions, sigmoid and linear functions through an 
exhaustive empirical comparison. We investigate the 
forecasting performance of alternative parameter setups with 
established benchmarks, evaluating all models on 36 artificial 
time series with archetypical patterns of level, trend, 
seasonality and trend-seasonality. As a result, we find that SVR 
and NN outperform statistical methods on particular time 
series patterns. Forecasting performance of SVR and NN is 
impacted by choice of parameters, indicating NN and SVR with 
the RBF kernels as robust choices on most time series 
forecasting problems. 

I. INTRODUCTION 

ccurate corporate decisions in an uncertain future 
environment requires accurate forecasting [1, 2]. As a 
consequence, significant effort has been invested in 

developing forecasting methods with enhanced forecasting 
accuracy, extending established statistical approaches of 
Exponential Smoothing and ARIMA-methods towards 
nonlinear methods of ARCH, GARCH, STAR etc. and 
methods of computational intelligence [3]. While statistical 
methods are embedded in a methodology following iterative 
model building and parameterization based upon a prior 
theory, methods from computational intelligence such as 
support vector regression (SVR) and neural networks (NN) 
are semi-parametric, data-driven methods which capture the 
underlying linear and/or non-linear model form and suitable 
parameters directly from the data [4]. Thus they offer 
promising features to applications to various business 
forecasting domains where limited tangible knowledge on an 
underlying model form exists, such as accounting, finance, 
marketing, economics, production, tourism, transportation 
etc. [2, 5]. 
However, in contrast to statistical methods, NN as well as 
SVR have not been established in business practice despite 
their attractive theoretical properties. In particular, the 
limited empirical studies on time series forecasting with NN 
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and SVR have provided only mixed results on their 
performance [6]. Substantial empirical criticism towards NN 
has raised doubts to their ability to forecast even simple time 
series patterns of seasonality or trends without adequate data 
pre-processing [4]. However, Hansen and Nelson indicate 
that these comparisons may be misleading, as they often aim 
to identify one true and superior method, which may be 
infeasible given the importance of the context of complex 
forecasting problems and different data properties [7]. Also, 
Liao and Fildes point out that missing documentation and 
unfixed parameter designs as well as unsuitable benchmarks 
provide only one-sided results with limited insights [8]. As a 
consequence, this paper investigates the accuracy of NN and 
SVR time series forecasting with various archetypical time 
series of seasonal, trend and trend-seasonal patterns with 
increasing levels of noise. In particular, we study the 
effectiveness of alternative parameters of SVR and kernel 
functions and NN architectures on their forecasting 
performance to derive the conditions under which they 
perform well. The exhaustive modelling evaluates a total of 
33,120 NN and 4,327,152 SVR models using a consistent 
methodology [8] in comparison to a statistical benchmark 
method and on multiple established error measures to avoid 
evaluation biases.  
This paper is organised as follows: next we provide a brief 
introduction to SVR and NN to time series forecasting. 
Section three presents an overview of the experimental 
design including the artificially generated time series and the 
obtained results, followed by conclusions.  

II. METHODS OF COMPUTATIONAL INTELLIGENCE 

A. Artificial Neural Networks 
Computational Intelligence methods are data-driven, self 
adaptive methods, which learn from examples and capture 
subtle functional relationships from the data, even if the 
underlying relationships are unknown or hard to describe 
[3]. They promise attractive features to business forecasting 
because of their inherent capability of learning arbitrary 
input–output mappings from examples without a priori 
assumptions on the model structure and their ability to 
generalize for future values of the dependent variables [3, 
9].  
NNs represent a class of distinct mathematical models 
originally motivated by the information processing in 
biological neural systems [10-13]. In this study a special 
class of NN, the Multi Layer Perceptron (MLP) is used. 
MLPs are feed forward neural networks which are typically 
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composed of several layers of nodes with unidirectional 
connections [3], often trained by back propagation [14]. 
MLPs are capable of predicting non linear time series 
patterns through the information processing in hidden layers 
[3, 15], frequently modeling a NARX(p) process or an 
ARX(p) processes equivalent to linear statistical forecasting 
models without  nonlinear activation functions [3, 15].  
The components of MLPs are the topology, the activation 
functions, the propagation functions, the connecting 
network, the input signal combination rules and the learning 
algorithms [12]. The many degrees of freedom in the 
modeling process require a number of decisions to fully 
specify a network architecture and to assure valid and 
reliable performance [8, 9]. This also includes decisions as 
choosing the accuracy measure [15], learning rates, 
sampling method, initializing weights, biases, cooling factor, 
initialization interval, activation function headroom, 
stopping rule and number of training iterations [8, 14, 16].  
The training input data is in form of vectors [3] of the time 
lagged observations [7], whereas the number of input nodes 
corresponds to the number of lagged observations [4]. The 
input vector is almost composed as a sliding window over 
the time series observations [3, 9]. At this study a linear 
function for the input nodes is used. The incoming signal at 
the nodes of the next layer is combined by the summing 
method [12]. The nodes of the hidden layer use non linear 
hyperbolic tangent (TanH) activation functions, which is a 
sigmoid, continuous, fully differentiable function and is 
defined in ]-1;1[ [10]. It determines the relationship between 
the inputs and outputs of a node and a network [1]. Just one 
output neuron with identity function is used. The network is 
in matrix form and rules the signal traffic with arc weights 
[10], which are estimated from the data by minimizing the 
sum of squared errors (SSE) of the within sample one-step-
ahead forecast errors over the validation set [3, 17]. The 
propagation function regulates the output signal with an on-
neuron bias 

cow [10]. To demonstrate an example, the 
functional form for a feed forward NN with one layer may 
be written as [14] 

( )( )∑ ∑ +−+ ++=
h i jtihchhocoId ywwfwwfy 1tanh1tˆ   (1) 

Before a NN can be used to perform any desired task, it 
must be trained. Basically, training is the process of 
determining the arc weights which are the key elements of 
an NN [3]. The training vector is given to the input nodes 
and transformed by the arc weights chw  before they are 
accumulated at each node of the successive layer. This value 
is transformed by an activation function and weighted how  
between this layer and output node [3]. The output is 
compared with the teaching input and the weights are 
adjusted by a gradient descent method, which is the back 
propagation method in this study. This is repeated with the 
goal to minimize the error between the actual and desired 
system behavior [2] and the knowledge is stored in the arcs 
and nodes in form of arc weights and node biases [3].  

B. Support Vector Regression 
Unlike the NN, the training problem of the SVR is a convex 
optimization problem without local minima [18, 19] and 
methodically bases upon the statistical learning theory by 
Vapnik [11]. Thus, it constructs a regression model, which 
minimizes some empirical risk while it simultaneoulys 
regularizes the capacity [19]. The SVR is an advancement of 
the SVM and applicable for time series prediction. The aim 
of the SVR is to estimate an unknown function from the 
training dataset ( ) ( )( ) ( )Yyyi ×⊆ Xxx ,,...,, 1

, that has at most 
deviation in the ε-tube and is also as flat as possible [20-22]. 
For time series prediction the vector x  contains the lag 
structure and y is the prediction value at the target time [23]. 
Typically the estimated regression function is written as 

( ) ( ) ( ) bf
i
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=

ji xxx k
1

*αα            (2) 

where the Lagrange multipliers *, ii αα  act as forces pushing 
and pulling the predictions towards the target value y [24]. 
To get the Lagrange multipliers, the empirical risk and the 
capacity control term are formulated as convex optimization 
problem, which yields to the following dual optimization 
problem 
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with ,...,1=i , which is here formulated for the ε-
insensitive case [25-28]. The term ( )ji xx ⋅k  is the kernel 
function, which enables the SVR to predict non linear data. 
Instead of explicitly mapping the non linear data into a high-
dimensional feature space F , the data are implicitly 
transformed into F  by a kernel function. This is just 
applicable, as SV algorithms only depend on dot products 
between patterns. The common kernel functions used are the 
linear (4), the radial basis function (RBF) (5), the 
polynomial (6) and the sigmoid (7) [28-30]: 

( ) '', xxxx Tk = ,                                     (4) 

( ) ( ) 0,'exp', 2 >−−= γγ xxxxk , (5) 

( ) ( ) 0,'', >+⋅= γγ pT rk xxxx , (6) 
( ) ( )rk T +⋅= xxxx γtanh', , (7) 

Kernel functions enable dot products to be performed in 
high-dimensional feature space using low dimensional space 
data input without knowing the transformation explicitly. 
They must satisfy Mercer’s condition that corresponds to the 
inner product of some feature space. The RBF is most 
commonly used as the kernel for regression [31]. For the 
RBF case, the number of centers, the center-locations, the 
weights, and the threshold (b) are all produced automatically 
during parameterisation [28, 32]. As the number of hyper 
parameters influences the complexity of model selection, the 
polynomial kernel is often avoided due to its increased 



 
 

 

number of hyper parameters in comparison to the RBF and 
sigmoid kernel functions [29]. The sigmoid kernel was quite 
popular for support vector machines due to its origin from 
neural networks. Due to its conditionally positive 
definiteness, the quality of the local minimum solution in 
other parameters may not be guaranteed [33], making it 
potentially hard to select suitable parameters for the sigmoid 
kernel. Furthermore, all kernel functions corresponding to 
the inner product of some feature space, must satisfy the 
Mercer’s conditions [28, 34, 35].  
The degrees of freedom in the modeling process of SVR are 
often considered to be less than for a NN modeling process, 
but also must be defined ex ante. The Parameter C 
determines the trade of between the model capacity and the 
amount of outliers of the ε-tube [27, 36]. If C is selected too 
large, the objective is to minimize the empirical risk only, 
without regard to the model capacity [37]. In this study the 
ε-insensitive loss function is used, where only data outside 
the ε-tube are considered [27, 36], which signify that only 
the data points are support vectors, for which the Lagrange 
multipliers are non-zero [31]. Thus, the parameter ε affects 
the number of support vectors. As the support vectors are 
the data points that describe the searched function [20, 38], a 
larger ε allows for fewer support vectors to construct the 
regression function, which results in a flat regression model 
[37]. Another parameter, which has to be selected a priori, is 
the kernel parameter γ  which reflects the input range of the 
training data [37]. In addition, for the polynomial kernel 
function the degree of the polynomial d has to be specified 
as well.  

 
Figure1: This figure demonstrates the SVR prediction process [39]. 
 
The kernel function determines the dot products between the 
input pattern and the support vectors, which are multiplied 
by the weights *

iii ααυ −=  and become accumulated. This 
plus the threshold b yield in the final prediction value. As 
most parameters are of metric scale, the degrees of freedom 
in ex ante parameter selection appear as large as for NN. 

III. EMPIRICAL SIMULATION EXPERIMENT 

A. Time Series Patterns 
We evaluate SVR and NN model candidates on 36 artificial 
time series, which are derived from an empirical dataset of 
retail data from Zhang and Qi [6]. The time series 
components of trend and season are decomposed and 
recombined individually, building the patterns according to 
the Pegels-Gardner framework of trend-seasonal patterns 
[15]. The time series features are stationary (E), linear trend 
(LT), exponential trend (ET), degressive trend (DT), 
additive seasonality (AS) and multiplicative seasonality 
(MS), which are combined to E, LT, ET, DT, LT_AS, 
LT_MS, ET_AS, ET_MS, DT_AS, DT_MS patterns with 
[6] three increasing levels of normal distributed noise, 

( )2,0 σN , with 100,25,12 =σ [39]. Each monthly time series 
consist of 228 observations which are split into 180 for the 
training set, 48 for the validation set and 48 for the test set, 
i.e. [60%, 20%, 20%]. Thus 48 periods are withheld for out 
of sample, ex ante comparison. The statistical benchmarks 
of ARIMA or exponential smoothing are computed using 
the expert software system ForecastPro, utilizing 180 
observations for model selection and parameterization, as no 
validation data set is needed.  

B. Experimental Setup 
Developing SVR or NN models for a particular forecasting 
application is a non-trivial task which is critical for the 
performance of the competing methods, because of the 
potential impacts on learning and generalization [5]. As no 
generic methodology for modelling either SVR or NN exists 
for arbitrary datasets, we evaluate a range of candidate 
models with alternative parameterisations across the 36 time 
series.  
SVR modeling also requires setting and tuning of multiple 
parameters ex ante, so that a naïve strategy of a complete 
enumeration in the parameter space becomes intractable. 
Consequently, we apply a “grid-search” using exponentially 
growing sequences of parameters as proposed in Hsu [29], 
Yong [40] and Luxburg [41]. The grid search evaluates 
parameter combinations and picks the one with the best 
accuracy on the validation set [29]. The “grid-search” 
promises valid and reliable results for this investigation, as 
different kernel functions and similar parameter 
combinations have to be compared to guarantee a balanced 
comparison.  

TABLE 1 
PARAMETER GRIDS FOR MODEL SELECTION WITH SVR 

 RBF Sigmoid Linear 
C [2-5,2-4.5,…,215]  
ε  [2-10,2-9.5,…,2-5] [2-4.75,2-4.5,…,20]  
γ  [2-20,2-19,…,214] [2-13.5,2-13,…,210] [2-9.75,2-9.5,…,20]  
d [2, 3, 4, 5] 

 
Furthermore, we apply a shrinking technique to reduce the 
training time, because if most variables are finally at bounds 
the shrinking technique reduces the size of the working 
problem by considering only free variables [26, 42].  



 
 

 

For MLPs the selection of an adequate topology is problem-
dependent and influences the forecasting performance. Early 
investigations of Tang and Fishwick already show that the 
number of nodes in the topology affect the forecasting 
performance significantly [3]. The hidden nodes enable the 
NN to capture the pattern in the data and perform the non-
linear mapping between input and output variables, and they 
correspond to the number of free parameters to model the 
time series [14]. Several heuristics exist to determine for the 
topology selection but non of them are established across 
arbitrary empirical datasets, as the guidelines and heuristics 
were developed in limited experiments [3]. Although in 
theory a single hidden layer is sufficient for NNs to 
approximate any arbitrary non-linear, fully differentiable 
function, most authors use only one hidden layer for 
forecasting purposes. However, two or more hidden layers 
may provide enhanced accuracy for non-differentiable time 
series. To estimate an accurate MLP architecture, a set of 
920 candidate models for each time series were evaluated. 
All used parameters for the experiments with NN are shown 
in the following table: 

TABLE 2 
PARAMETER GRID FOR MODEL SELECTION WITH NN 

Input nodes 13  

All hidden Nodes 
have the 
tanh activation 
function 

Hidden Layer 1: 
0,2…,30 nodes  
Hidden Layers1+2: 
Sum 0,2,…30 nodes 
Hidden Layers1+2+3:  
Sum 0,2,…30 nodes 

Topology 

Output node 1 with identity function  
Iterations 1000 Epochs 
Algorithm Back-Propagation 
Learning Rate  0.1 
Cooling Rate 0,99 

Learning 
Parameter 

Cooling Cycle 1 Epoch 
Error evaluated every Epoch 
Error function MSE Early Stopping 

Criteria Early Stopping if there is no improvement on the 
validation set after 50 Epochs 

Init Interval ]-0,88;0,88[ 
Sampling Without Replacement 
Initializations 10  
Scaling: Linear Scaling of Min & Max into  
Target Function f(x)=x 
s 
The approach evaluates every combination of hidden layer 
0,…,3 and nodes 0,…,30 in step of 2 nodes limiting the 
models to pyramidal topologies with an equal or smaller 
number of nodes like in Crone et. al. [16] 
For NN and SVR all data is scaled to avoid numerical 
difficulties and to speed up the training process [13, 29]. 
Linear scaling including a headroom of 50% is used, to 
avoid saturation effects of observations close to the 
asymptotic limits of the activation functions [3, 13]. As the 
length of the input vector corresponds to the autocorrelation 
lag structure in the data, a constant lag structure of 13 inputs 
is chosen for all time series and SVR and NN alike [3, 43]. 
To guarantee an objective model selection, the SVR and NN 
models with the lowest MSE on the validation data set are 
selected.  

C. Evaluation Criteria 
Comparisons of errors across time series can be measured in 
different ways and the selection of an error measure is 
dependent upon the situation [44]. As the forecasting 
performance can be influenced by the evaluation criteria [8, 
44], three different criteria are used in this study. These are 
the mean absolute error (MAE), Root mean squared error 
(RMSE) and mean absolute percentage error (MAPE), 
which are explicitly explained in [15, 44]. The MAE is an 
easy interpretable measure that shows the relative absolute 
error. The RMSE has been used frequently to draw 
conclusions about forecasting methods [44], as it gives 
much more weight to large errors than to smaller ones [44]. 
The unit free measure MAPE show the percentage error. But 
as it has evaluation problems with time series vacillate 
around the zero-point. For these time series the MdAPE is 
used, which aims at reducing the bias in favor of low 
forecasts, thus offering advantage over the MAPE [15, 44]. 
The forecasting errors are measured on the out-of-sample 
data test set for each t+1 forecast on a rolling origin.  

D. Experimental Results 
Table 3 provides the results of the forecasting performance 
of the investigated methods and different SVR kernel 
functions in comparison to the statistical benchmark. All 
error measures provided represent the out of sample set. We 
evaluate the forecasting accuracy on the test set for all 12 
time series patterns across the increasing noise levels of low, 
medium and high noise, providing mean and median errors 
per method and noise level to show robustness of the results, 
across different patterns of stationary, seasonal, trended and 
trend-seasonal time series, linear versus non-linear patterns 
and across all series.  
The results indicate that although in some cases alternative 
error measures indicate different candidates as superior, 
most results are robust and consistent across error measures. 
Therefore we will limit our discussion to the MAE 
performance. For low and medium noise, RBF SVR 
outperforms all other methods on mean and median 
accuracy, followed closely by the NN who outperform SVR 
on median error of medium noise level. On a high noise 
level the NN outperform all other methods, indicating robust 
learning of the underlying relationship for increasing levels 
of noise. Over all patterns and noise levels, NN outperform 
all other methods significantly, followed by RBF SVR, SIG 
SVR, LIN SVR and the statistical benchmark methods. Poly 
SVR show consistently inferior forecasting accuracy across 
noise levels, and time series patterns. 
Differentiating the analysis by time series patterns, NN 
outperform all other methods including SVR and statistical 
benchmarks on seasonal, trended and trend-seasonal 
patterns, but not on stationary time series. Here RBF SVR 
outperforms NN and other methods, which is also the 
method with the second best performance, often even 
outperforming NN on median accuracy measures. 
 



 
 

 

TABLE 3 
FORECASTING ERROR MEASURE FOR THE OUT-OF-SMAPLE TEST DATA SET 

 MAE RMSE MAPE 
Time Series NN RBF SIG POLY LIN STAT NN RBF SIG POLY LIN STAT NN RBF SIG POLY LIN STAT
E_low 0.77 0.78 0.81 0.84 0.79 0.82 0.97 0.97 0.95 1.05 0.98 1.02 46.70 45.40 56.00 49.40 49.00 49.84
AS_low 0.88 0.89 1.11 1.03 1.12 0.85 1.12 1.12 1.40 1.26 1.40 1.05 0.92 0.93 1.15 1.07 1.16 0.87
MS_low 1.38 1.16 1.27 1.81 1.35 1.26 1.69 1.44 1.58 2.33 1.63 1.81 1.51 1.37 1.47 2.00 1.53 1.35
LT_low 1.28 0.84 1.33 11.60 0.86 0.85 1.67 1.05 1.67 13.20 1.06 1.04 0.57 0.37 0.58 5.17 0.38 0.38
ET_low 1.70 0.92 5.75 29.90 1.07 11.20 2.04 1.14 8.41 31.60 1.33 14.39 2.70 1.54 7.40 53.70 1.73 15.42
DT_low 0.82 0.85 0.98 5.24 0.95 4.79 1.03 1.05 1.20 5.86 1.17 5.42 0.37 0.38 0.44 2.33 0.42 2.13
LT_AS_low 1.18 1.34 1.14 25.60 2.36 0.86 1.48 1.71 1.43 32.40 2.94 1.07 0.53 0.60 0.51 10.00 1.08 0.38
LT_MS_low 1.46 1.26 1.30 3.55 1.40 0.84 1.81 1.60 1.62 4.73 1.79 1.06 0.65 0.57 0.59 1.50 0.62 0.39
ET_AS_low 1.29 2.08 1.45 84.90 25.10 35.00 1.60 2.76 1.79 107.0 27.70 47.13 0.34 0.51 0.38 21.70 6.32 8.22
ET_MS_low 6.92 9.11 16.70 59.70 6.72 34.10 12.70 12.10 20.38 77.80 12.10 50.37 2.16 3.08 6.14 20.40 2.09 10.00
DT_AS_low 3.87 2.82 2.12 7.54 2.09 3.44 4.90 3.45 2.59 8.81 2.55 4.02 0.85 0.62 0.48 1.69 0.46 0.76
DT_MS_low 2.26 1.21 2.34 1.81 2.48 2.02 2.91 1.63 2.79 2.09 3.06 2.44 1.09 0.58 1.14 0.84 1.21 0.90
Low Noise Mean 1.98 1.94 3.03 19.46 3.86 8.00 2.83 2.50 3.82 24.01 4.81 10.90 4.87 4.66 6.36 14.15 5.50 7.55
Low Noise Median 1.34 1.19 1.32 6.39 1.38 1.64 1.68 1.52 1.65 7.34 1.71 2.13 0.89 0.61 0.87 3.75 1.19 1.13
E_medium 3.93 3.78 3.90 3.78 3.78 3.81 4.79 4.68 4.85 4.68 4.68 4.71 115.0 87.40 101.0 87.40 85.90 89.54
AS_medium 3.72 4.06 5.67 4.24 5.69 3.84 4.79 5.16 7.02 5.49 7.04 4.82 3.77 4.21 5.79 4.20 5.83 3.96
MS_medium 5.50 6.79 5.89 6.86 6.29 5.95 6.88 8.27 7.34 8.49 7.39 7.87 6.38 8.15 6.83 8.89 7.23 6.39
LT_medium 4.61 4.46 7.87 19.00 4.60 3.81 5.89 5.51 9.18 22.10 5.89 4.71 2.06 1.98 3.43 8.43 2.07 1.70
ET_medium 5.44 5.24 6.56 30.90 5.61 14.90 7.10 6.22 8.06 33.00 6.75 18.38 8.48 8.38 9.80 54.80 6.05 20.66
DT_medium 4.10 4.29 4.85 5.84 4.53 9.75 5.15 5.30 5.93 7.31 5.59 11.20 1.82 1.89 2.13 2.59 2.00 4.28
LT_AS_medium 6.35 6.42 3.51 25.80 6.47 4.04 7.59 7.81 4.59 33.00 8.05 4.98 2.86 2.85 1.59 10.20 2.87 1.83
LT_MS_medium 6.21 6.45 6.62 26.50 6.60 3.99 7.47 7.78 8.20 35.50 8.19 4.96 2.87 2.96 3.03 10.50 3.03 1.88
ET_AS_medium 15.60 17.20 16.50 105.0 5.95 51.70 18.60 20.90 20.84 126.0 7.33 64.57 4.04 4.40 4.07 27.60 1.61 12.45
ET_MS_medium 17.00 12.00 14.70 109.0 32.30 53.40 23.90 16.00 19.82 155.0 39.00 70.99 5.34 4.51 5.28 39.60 10.70 16.53
DT_AS_medium 6.77 7.07 7.77 13.60 8.11 4.45 8.55 8.59 9.28 18.00 9.81 5.36 1.51 1.57 1.74 3.01 1.83 1.00
DT_MS_medium 6.28 6.19 7.95 10.20 106.0 3.91 7.88 7.80 9.80 12.10 111.0 4.95 2.77 2.82 3.64 4.58 52.10 1.80
Medium Noise Mean 7.13 7.00 7.65 30.06 16.33 13.63 9.05 8.67 9.58 38.39 18.39 17.29 13.08 10.93 12.36 21.82 15.10 13.50
Medium Noise Median 5.86 6.31 6.59 16.30 6.12 4.25 7.29 7.79 8.13 20.05 7.36 5.17 3.32 3.59 3.86 9.55 4.43 4.12
E_high 9.39 8.50 9.88 8.81 8.72 8.51 11.50 10.70 12.20 11.40 11.00 10.90 115.0 102.0 100.0 110.0 98.50 111.0
AS_high 9.45 13.90 12.90 14.20 13.00 8.91 12.10 17.10 16.10 18.10 16.10 11.80 10.00 16.20 14.20 15.10 14.20 9.89
MS_high 8.54 12.10 13.70 14.70 13.60 12.30 10.70 15.30 17.21 19.90 17.20 16.18 11.20 16.50 18.10 20.60 18.10 15.10
LT_high 8.76 14.70 9.26 20.50 8.95 8.47 11.60 18.10 11.70 23.30 11.40 10.80 3.87 6.66 4.13 9.12 4.02 3.85
ET_high 12.90 13.30 21.10 27.90 19.60 16.60 16.40 17.00 26.80 31.40 23.40 20.95 23.90 22.30 38.60 49.80 29.20 24.81
DT_high 8.51 9.03 9.72 12.40 9.79 8.62 10.80 11.50 12.49 15.40 12.50 11.25 3.77 4.00 4.29 5.41 4.30 3.87
LT_AS_high 13.20 13.30 13.30 17.00 13.30 8.92 16.40 16.50 16.80 23.40 16.50 11.80 6.00 6.05 6.03 7.33 6.07 4.15
LT_MS_high 13.80 15.60 95.80 29.20 14.40 9.14 17.06 20.40 101.0 37.90 17.70 12.20 6.48 7.11 45.20 12.36 6.63 4.45
ET_AS_high 19.30 19.00 23.40 135.0 19.90 47.90 26.40 24.50 33.67 183.0 24.40 61.21 5.19 5.02 5.69 33.30 5.09 11.44
ET_MS_high 26.30 28.50 15.80 85.30 39.10 49.50 34.30 38.60 22.60 118.0 49.30 67.99 8.68 10.00 5.58 31.70 12.70 15.12
DT_AS_high 14.20 13.40 15.20 22.60 15.30 13.60 17.40 16.60 18.65 31.00 18.70 16.36 3.15 3.01 3.36 5.00 3.37 3.10
DT_MS_high 11.20 13.60 14.20 14.00 14.20 9.23 14.74 16.30 17.77 17.20 17.70 12.20 5.18 6.34 6.44 6.20 6.42 4.49
High Noise Mean 12.96 14.58 21.19 33.47 15.82 16.81 16.62 18.55 25.58 44.17 19.66 21.97 16.87 17.10 20.97 25.49 17.38 17.61
High Noise Median 12.05 13.50 13.95 18.75 13.90 9.19 15.57 16.80 17.49 23.35 17.45 12.20 6.24 6.89 6.24 13.73 6.53 7.19
Mean Stationary Patterns 4.70 4.35 4.86 4.48 4.43 4.38 5.75 5.45 6.00 5.71 5.55 5.54 92.23 78.27 85.67 82.27 77.80 83.46
Mean Seasonal Patterns 4.91 6.48 6.76 7.14 6.84 5.52 6.21 8.07 8.44 9.26 8.46 7.26 5.63 7.89 7.92 8.64 8.01 6.26
Mean Trend Patterns 5.35 5.96 7.49 18.14 6.22 8.78 6.85 7.43 9.49 20.35 7.68 10.90 5.28 5.28 7.87 21.26 5.57 8.57
Mean Trend-Seasonal P. 9.62 9.81 14.43 43.13 17.88 18.67 12.54 12.50 17.42 56.83 20.99 24.65 3.32 3.48 5.61 13.75 6.90 5.49
Median Stationary 3.93 3.78 3.90 3.78 3.78 3.81 4.79 4.68 4.85 4.68 4.68 4.71 115.0 87.40 100.0 87.40 85.90 89.54
Median Seasonal 4.61 5.43 5.78 5.55 5.99 4.90 5.84 6.72 7.18 6.99 7.22 6.35 5.08 6.18 6.31 6.55 6.53 5.18
Median Trend 4.61 4.46 6.56 19.00 4.60 8.62 5.89 5.51 8.41 22.10 5.89 11.20 2.70 1.98 4.13 8.43 2.07 3.87
Median Trend-Seasonal 6.85 8.09 10.63 25.70 10.71 9.03 10.63 10.35 13.30 32.70 14.30 12.00 2.87 2.99 3.50 10.10 3.20 3.63
Mean Linear Patterns 5.29 6.08 5.89 12.70 5.80 4.47 6.66 7.53 7.32 15.78 7.25 5.73 25.61 22.89 24.53 26.45 22.59 23.12
Mean Non-linear Patterns 8.39 8.72 12.99 35.14 15.10 16.98 10.92 11.09 15.83 45.39 17.80 22.22 4.60 4.90 7.58 17.50 7.70 7.77
All Noise Levels Mean  7.36 7.84 10.62 27.66 12.00 12.81 9.50 9.91 12.99 35.52 14.29 16.72 11.60 10.90 13.23 20.49 12.66 12.89
All Noise Levels Median 6.25 6.44 7.20 14.45 6.54 8.49 7.53 7.81 8.80 19.00 8.12 10.85 3.46 3.54 4.21 9.56 4.16 4.22
 
In distinguishing between linear and nonlinear combinations 
of the archetypical time series patterns, NN significantly 
outperform all other methods on non-linear patterns, closely 
followed by RBF SVR. However, on linear time series 
patterns the statistical benchmark methods clearly 
outperform all methods from computational intelligence. As 
we evaluated only a single expert system approach in the 
form of ForecastPro, this may not serve as a general proof of 
potential problems with linear methods to forecast non-

linear patterns, but rather as an indication to the sub-optimal 
model selection and parameterization scheme incorporated 
in the software, which does include models of DT but not of 
ET to forecast the corresponding non-linear time series 
patterns. 
To summarize, both NN and SVR show pre-eminent 
performance in comparison to established statistical 
benchmark methods of ARIMA and Exponential Smoothing 
across time series patterns, noise levels and linear and non-



 
 

 

linear patterns. The inferior performance of SVR with 
polynomial kernels raises caution to its use for future 
applications. MLPs and SVR with RBF kernels demonstrate 
superior performance allowing valid and reliable forecasting 
without ex ante identification of the underlying time series 
patterns and specification of the correct model form in 
contrast to established statistical methods. Although 
alternative methods may outperform NN and RBF SVR on 
selected time series patterns, NN and RBF always 
demonstrate near comparative accuracy, indicating these 
methods as a robust alternative if only a single method is 
evaluated or applied in forecasting.  

IV. CONCLUSIONS 
This empirical comparison analyzed the performance of 
competing forecasting methods of SVR with four commonly 
used kernel functions and NN in comparison with 
established statistical benchmarks. The forecasting 
performance was measured on 36 time series consisting of 
12 basic time series patterns overlaid with three levels of 
noise. The results were evaluated by using three established 
error measures on out-of-sample accuracy.  
The experiments demonstrated the superior forecasting 
performance of NN and SVR with RBF kernels and 
indicated their ability to learn an adequate model form and 
parameters directly from the data. While NN are well known 
in forecasting applications, the recently developed method 
of SVR provides a recent alternative to time series 
forecasting, offering attractive properties through the 
underlying statistical learning theory. However, even 
through SVR in theory promise global minima and therefore 
provide an attractive alternative to the theoretical 
shortcomings of NN with local minima, their forecasting 
performance is not superior to NN. However, this mixed 
performance may be the result from suboptimal hyper-
parameter combinations and a biased model selection 
approach, which provides fertile ground for further 
investigation. Also, the forecasting performance of SVR 
appears to be highly influenced by the choice of its kernel 
function. The RBF kernel function performed superior on 
time series forecasting problems, which stands in contrast to 
other recent investigations of the impact of SVR 
parameterisation. Although this investigation does not 
attempt to derive any general superiority of a particular 
forecasting method for all potential forecasting applications 
and time series patterns, NN and SVR have demonstrated 
per-eminent performance. To say the least, their accuracy 
was under no circumstances significantly worse then 
established methods, calling for increased research activity 
in these areas. 
For future research, further evidence on the sensitivity of 
NN and SVR parameters on time series forecasting accuracy 
is required. We seek to extend our analysis towards multiple 
real empirical time series, evaluating results across multiple 
origins and for different forecasting horizons.  
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