
 
 

 

  

Abstract— The problem of cost-sensitive learning involves 
classification analysis in scenarios where different error types 
are associated with asymmetric misclassification costs. Business 
applications and problems of medical diagnosis are prominent 
examples and pattern recognitions techniques are routinely 
used to support decision making within these fields. In 
particular, support vector machines (SVMs) have been 
successfully applied, e.g. to evaluate customer credit worthiness 
in credit scoring or detect tumorous cells in bio-molecular data 
analysis. However, ordinary SVMs minimize a continuous 
approximation for the classification error giving similar 
importance to each error type. While several modifications 
have been proposed to make SVMs cost-sensitive the impact of 
the approximate error measurement is normally not 
considered. Recently, Orsenigo and Vercellis introduced a 
discrete SVM (DSVM) formulation [1] that minimize mis-
classification errors directly and overcomes possible limitations 
of an error proxy. For example, DSVM facilitates explicit cost 
minimization so that this technique is a promising candidate 
for cost-sensitive learning. Consequently, we compare DSVM 
with a standard procedure for cost-sensitive SVMs and 
investigate to what extent improvements in terms of mis-
classification costs are achievable. While the standard SVM 
performs remarkably well DSVM is found to give yet superior 
results. 

I. INTRODUCTION 
HE support of decision making by means of 
classification analysis has received considerable 

attention in research and practice. Classification involves the 
prediction of a discrete class membership on the basis of 
observable/measurable attributes. For example, the task of 
credit scoring [2] consists of estimating whether a customer 
is credit worthy or not using attributes like the applicants 
age, income, occupation etc. It is generally believed that the 
costs of granting credit to a bad risk, e.g. a defaulting 
customer, is significantly greater than the cost of denying 
credit to a good risk candidate [3]. The same problem arises 
in medical diagnosis where a false alarm is usually not as 
severe as a missed correct alarm; e.g. missing a positive 
result when detecting tumors from magnetic resonance 
imaging scans might induce dramatic consequences while a 
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small number of false alarms is tolerable if the scans are 
subsequently re-screened by medical personal; e.g. [4].  

The SVM, introduced by Vapnik an co-workers [5, 6], is 
a state-of-the-art classification algorithm that has been used 
successfully to support managerial and medical decision 
making; e.g. [7-10]. SVM training involves the 
minimization of a continuous approximation of the 
classification error giving similar importance to each error 
type. While the problem of using SVM for cost-sensitive 
classification has received some attention in the literature, 
[4, 11-14], the impact of the error approximation is usually 
not considered. 

Recently, Orsenigo and Vercellis proposed a discrete 
SVM formulation that minimizes misclassification errors in 
a more intuitive manner. Emphasizing on classification 
errors and facilitating an explicit cost-minimization this 
approach is a promising candidate for cost-sensitive 
learning. Consequently, we compare DSVM with a standard 
procedure for cost-sensitive SVMs and evaluate to what 
extent improvements in terms of misclassification costs are 
achievable. 

The remainder of the paper is organized as follows. A 
brief introduction to SVMs is given in Section II before we 
review previous work on cost-sensitive SVMs in Section III. 
We present the DSVM formulation in Section IV and 
describe a tabu search (TS) heuristic to solve the resulting 
optimization problem. The results of our empirical 
comparisons with the standard SVM can be found in 
Section V. Conclusions are given in Section VI. 

II. SUPPORT VECTOR MACHINES 
The original SVM can be characterized as a supervised 

learning algorithm capable of solving linear and non-linear 
binary classification problems. Given a training set with m 
patterns 1{( , )}m

i i iy =x , where X n
i ∈ ⊆ ℜx is an input vector 

and { 1, 1}iy ∈ − +  its corresponding binary class label, the 
idea of support vector classification is to separate examples 
by means of a maximal margin hyperplane [15]. That is, the 
algorithm strives to maximize the distance between 
examples that are closest to the decision surface. It has been 
shown that maximizing the margin of separation improves 
the generalization ability of the resulting classifier [6]. To 
construct such a classifier one has to minimize the norm of 
the weight vector w under the constraint that the training 
patterns of each class reside on opposite sides of the 
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separating surface; see Fig. 1. Since { 1, 1}iy ∈ − +  we can 
formulate this constraint as: 
 (( ) ) 1,  i iy b i = 1,...,m.⋅ + ≥w x  (1) 

Examples which satisfy (1) with equality are called 
support vectors since they define the orientation of the 
resulting hyperplane.  

To account for misclassifications, that is examples where 
constraint (1) is not met, the so called soft margin 
formulation of SVM introduces slack variables iξ ∈ℜ  [15]. 
Hence, to construct a maximal margin classifier one has to 
solve the convex quadratic programming problem (2): 

( )
1

min 1

. . :  (( ) ) 1 - ,  

m

w,b, i
i

i i i

2
s t y b i = 1,...,m.

ξ
β β ξ

ξ
=

+ −

⋅ + ≥

∑w

w x
 (2) 

β  is a tuning parameter which allows the user to control 
the trade off between maximising the margin and classifying 
the training set without error. The primal decision variables 
w and b define the separating hyperplane, so that the 
resulting classifier takes the form: 

( )( ) ( * )y sgn b*= ⋅ +x w x  , (3) 

where w* and b* are determined by (2). 
To construct more general non-linear decision surfaces 

SVMs implement the idea to map the input vectors into a 
high-dimensional feature space via an a priori chosen non-
linear mapping function Φ . Constructing a separating 
hyperplane in this feature space leads to a non-linear 
decision boundary in the input space. Expensive calculation 
of dot products ( ) ( )i jΦ ⋅Φx x in a high-dimensional space 
can be avoided by introducing a kernel function K, see (4). 
The structure of SVMs allows this kernel integration without 
affecting the overall algorithms or training procedure [15]. 

( , ) ( ) ( ).i j i jK = Φ ⋅Φx x x x  (4) 

Prominent candidates for the kernel function are the 
linear, radial and polynomial kernel; e.g. [15]. 
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Fig. 1: Linear separation of two classes -1 and +1 in two-dimensional space 
with SVM classifier [16] 

 
 

III. APPROACHES FOR COST-SENSITIVE SVM 
The problem of cost-sensitive learning is well established 

in the literature; e.g.[17, 18]. Let the entries c(i,j) of a loss-
matrix C denote the cost of predicting class i when the true 
class is j. If we assume C to be asymmetric so that certain 
error types are more severe or costly than others, cost-
sensitive learning refers to comprising this cost-information 
into the process of classifier induction. Approaches for cost-
sensitive learning include algorithmic modifications to make 
individual learners cost-sensitive, e.g. [4, 14, 19] and meta-
strategies designed to work with a broad variety of standard 
error based learners [20, 21]. Note that there is a strong 
connection between cost-sensitive learning and learning 
from imbalanced data sets so that these problems are 
commonly considered in a mutual framework [22, 23]. 

Following, we briefly review algorithmic modifications to 
make SVM cost-sensitive, and/or robust to skewed class 
distributions.  

Considering the SVM classifier (2) and (3) there are three 
links to incorporate cost-sensitivity into SVM: The weight 
vector w, the threshold b and the kernel K. The easiest way 
to bias SVM towards a minority and/or more important class 
is to manipulate the threshold b. This approach has been 
proposed by [14] and is also known as boundary movement 
[19] since the learned optimal separating hyperplane is 
altered as a post-processing step. The new resulting decision 
function is shown in (5) where the modifier bΔ can be 
determined by ROC analysis [24]. 

( )( ) ( * )y sgn b* + b= ⋅ + Δx w x  (5) 
A well established approach to consider imbalanced 

class/cost distributions during SVM learning is to modify 
the SVM objective using individual error weights for each 
class [4, 13].  
 

( )
{ } { }| 1 | 1

min 1

. . :  (( ) ) 1 - ,  
i i

w,b, i i
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s t y b i = 1,...,m.

ξ
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+ −
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⎛ ⎞
+ − +⎜ ⎟⎜ ⎟

⎝ ⎠
⋅ + ≥

∑ ∑w

w x

 (6) 

In (6), the weights c+ and c− measure the severity of a 
misclassification of positive and negative examples. It has 
been shown that this modification affects the weight vector 
w in the SVM decision function, e.g. [15]. We identify (6) to 
be the standard version of cost-sensitive SVM and will refer 
to it as csSVM in the following. 

Adjustments of the kernel to overcome class imbalance 
problems have been suggested in [25, 26]. The authors 
propose a kernel boundary alignment algorithm that directly 
alters the kernel matrix increasing its values in the vicinity 
of the decision boundary and decreasing them in non 
boundary areas. This magnifies the spatial resolution of the 
training examples near the boundary, particularly in the area 
close to the minority class, and is shown to allow a purer 
data separation. 

348



 
 

 

All approaches focus on effectiveness, e.g. classification 
accuracy, and do not explicitly consider costs. However, the 
most accurate classifier is not necessarily the most cost 
efficient one and to obtain a deeper integration of cost and 
decision making aspects, we propose a discrete SVM in the 
following. 

IV. DISCRETE SUPPORT VECTOR MACHINES  

A. Motivation and mathematical formulation 
The original SVM utilizes the distance of a misclassified 

point to the separating hyperplane to measure classification 
error. That is, the discrete classification error is replaced by 
the continuous proxy iξ  for computational convenience; see 
(2). DSVM [1] reverses this simplification and replaces iξ  

by [ ]0,1iθ ∈  to account for asymmetric misclassification 
costs in a more intuitive manner. In addition, we substitute 
the L2-norm in SVMs’ objective by the L1-norm. The L1-
norm forces more elements of the weight vector to zero and 
therewith increases the interpretability of the model [27, 28]. 
Since model comprehensibility and transparency are deemed 
important in business and medical areas we believe the L1-
norm to beneficial for these domains. Further more, using 
the L1-norm facilitates the usage of fast algorithms for 
solving linear programs as a sub-step within our tabu search 
heuristic; see IV.B for details. 

The resulting formulation is given in (7) where ju  
denotes a primal decision variable that controls the value of 
the weight vector w and Q is a sufficient large number.  

( )
{ } { }

[ ]

1 | 1 | 1
min 1
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-u w u j n
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β β θ θ

θ
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+ −

= =+ =−
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+ − +⎜ ⎟⎜ ⎟
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≤ ≤ =

∈ =
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∑ ∑ ∑
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 (7) 

 
Note that DSVM allows a different interpretation of c+  

and c−  than csSVM (6). From a decision making point of 
view these values serve as an abstract measure of error 
importance in csSVM that is used to weight a proxy for the 
classification error. As a rule of thumb the reciprocal of the 
class prior is a prominent choice for these parameters [27, 
29]. On the contrary, in DSVM we can interpret c+  and c−  
a real cost values, e.g. in an economical sense. Consider for 
example the case of credit scoring. A false positive error, 
e.g. predicting a defaulting customer as credit worthy, is 
associated with a certain cost and while we could directly 
incorporate such values or respective estimates into (7) their 
usage in (6) is questionable due to the multiplication with a 
continuous distance. Hence, even if a user has an idea about 
class specific misclassification costs, there is no 

straightforward rule how to translate them into a suitable 
setting for c+  and c− . Furthermore, errors of the same type 
have in general varying impact on the objective depending 
on iξ . In fact, this is another reason why DSVM might be 
sounder for cost-sensitive learning. 

Problem (7) is a linear program with continuous 
( ), ,w b u and discrete ( )θ decision variables. 

As in the original SVM the objective includes a margin 
maximization part and an (empirical) error minimization part 
and therefore implement Vapnik’s principle of structural risk 
minimization [6]. Additionally, we can interpret (7) as an 
approach to optimize generalization performance and 
misclassification cost in parallel. 

Obviously, DSVM is computationally much more 
expensive than (6) due to the integer constraint. Since 
standard SVM optimization techniques are no longer 
applicable we develop a tabu search (TS) algorithm to be 
described in the following. 

B. A tabu search heuristic for DSVM 
To solve (7) we start with considering a relaxation of 

DSVM where the integer constraint for θ  is dropped.  
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≤ ≤ =
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(8) 

The linear program (8) provides an upper bound for the 
optimal solution of DSVM and can be solved efficiently 
using the simplex method; e.g. [30].  

In order to solve the discrete SVM problem (7) we 
developed a tabu search (TS) algorithm. TS is a meta-
heuristic to solve combinatorial optimization problems. The 
idea is to find a feasible solution and search its 
neighborhood for better candidates using local hill-climbing 
strategies. Here, better means higher/lower objective values 
for maximization/minimization problems. However, the TS 
objective does not necessarily coincide with the MIP’s 
objective [1]. The name TS originates from the fact that the 
algorithms incorporates some heuristics which prohibit 
certain moves (tabu moves) to avoid cycling and stops at 
suboptimal points [31]; see [32-34] for details.  

Our TS implementation is based on the observations that 
feasible solutions, and consequently also the optimal 
solution, for the zero-one problem (7) can be found in an 
extreme point of the relaxation (8); see e.g. [35]. Therefore, 
the extreme points of the polyhedral constraint region 
defined by (8) form a natural neighbourhood for TS and 
each extreme point is a basic feasible solution (BFS). The 
general structure of such an extreme point tabu search 
(EPTS) [35, 36] is as follows: 1) Use the simplex method to 
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find an extreme point e for (8) and use it as an initial 
solution. 2) Examine adjacent solution in the neighbourhood 
of e. These are all solution that could be obtained by 
ordinary simplex pivot operations, e.g. exchanging a current 
basis variable for a non-basis variable. 3) Select the move 
that results in the largest improvement of the objective value 
and is not contained in the tabu list. 4) Execute the selected 
move and update the tabu list using information on the time 
a variable is pivoted (recency information) and its overall 
numbers of pivots (frequency information). To transform the 
generic EPTS schema in a concrete algorithm one has to 
define the strategy for screening the candidate list in step 2), 
the move evaluation function and the rules and memory 
structures for the tabu list.  

Note that each TS move can increase/decrease the current 
objective value z and increase/decrease the current amount 
of integer infeasibility ii; that is the amount a given solution 
fails to fulfil the integer constraint. Therefore, every pivot 
operation belongs to one for four elementary types, e.g. 
increase z and decrease ii (best moves) or decrease z and 
increase ii (worst moves) [37].  

Our TS implementation evaluates each move within the 
candidate list according to its move type. To resolve 
situations in which one can either increase z on the cost of 
increasing ii or decrease ii on the cost of decreasing z we 
incorporate a strategic oscillation component [35] so that the 
algorithms strives to improve z for a given number of 
iterations, then switches to decreasing ii, then switched back 
to z improvements, etc. This trade-off is illustrated in Fig. 2. 

While the tabu status in our implementation is solely 
based on recency and frequency information (see above) we 
use an aspiration criterion to allow moves that lead to a new 
best feasible MIP solution even if they are currently tabu.  
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Fig. 2: Trade-off between TS moves that lower ii and improve objective 
value. 

C. SVM decision tree 
Introducing an integer constraint into the SVM 

formulations hinders application of the kernel trick to 
construct non-linear classifiers. In particular, the relaxed 
primal constraint 0 1jθ≤ ≤  in (8) results in a non-linear 
constraint in the dual problem. Consequently, solving the 
dual formulation is complicated. Note that this constraint is 

independent of the norm of the weight vector so that the 
same problem arises when using the L2-norm.  

To overcome this limitation the construction of a 
hierarchical SVM decision tree has been proposed in [1]. 
We adopt this idea and recursively partition the data by 
linear DSVMs until some predefined conditions are met. To 
avoid over-fitting or the necessity to prune the SVM 
decision tree the following rules have to be regarded during 
the tree generation progress: 1) the tree deep, e.g. the 
number of levels, must not exceed a specified value, 2) 
splitting a node is impossible if the ratio of minority class 
examples falls below a specified threshold, and 3) any node 
must contain a specified minimum number of instances to 
remain divisible. 

V. EMPIRICAL STUDY  

A. Overview 
The empirical evaluation of DSVM strives to explore the 

potential of DSVM and csSVM in cost-sensitive scenarios. 
We consider four data sets from the Statlog project [38] and 
the UCI machine learning library [39] as a case study. The 
two credit scoring data sets Australian credit (ac) and 
German credit (gc) serve as examples from the field of 
managerial decision making while heart-disease (hrt) and 
Wisconsin breast cancer (wbc) exemplify cases of medical 
diagnosis. A brief description of data set characteristics is 
given in Table 1. For detailed information on data set origin, 
task and variable description the reader is referred to [38, 
40]. 

TABLE 1:  
DATA SET CHARACTERISTICS* 

 #Cases #Features #Class -1 #Class +1 
ac  690  14  307  383 
gc  1000  24  700  300 
hrt  270  13  150  120 
wbc  683  10  239  444 

* We use the pre-processed data sets that are available via the LIBSVM 
homepage [41]. 

 
The data sets have been partitioned into 2/3 training set 

for model building and 1/3 test set for out-of-sample 
evaluation. 

B. Predictive accuracy of DSVM 
Preceding an analysis of asymmetric misclassification 

costs we have to verify the predictive accuracy of our 
DSVM implementation for standard situations. Therefore, 
we compare DSVM versus csSVM with linear (lin), 
radial (rad) and polynomial (poly) kernel function. Since 
DSVM is a linear classifier, we use the decision tree 
extension (Section IV.C) to construct hierarchical classifiers 
with a tree deep of two (DSVM-DT2) and three (DSVM-
DT3) levels. The balanced error rate (BER) is used to 
measure predictive accuracy. BER is calculated as: 

0.5 .FP FNBER
N N+ −

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 (9) 
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Here, FP denotes the number of false positive cases, e.g. 
the number of false alarms while FN (false negatives) 
measures the number of missed true alarms. We use 
N+ / N− to represent the overall number of positive/negative 
examples with in data set. 

Hyperparameters, e.g. β and kernel parameters have been 
determined by cross-validation (CV) adopting a grid search 
strategy [7, 42]. For each classifier, the parameter setting 
providing the lowest 10-fold CV BER is selected and 
evaluated on the test set. Results are given in Table 2. 
 

TABLE 2:  
BALANCED ERROR RATE OF CSSVM AND DSVM 

 Training1 Test 
 BER FP FN BER2 FP FN 
ac        
 SVM (lin) 0.13 43 18 0.15 26 10 
 SVM (rad) 0.14 48 17 0.14 29 6 
 SVM (poly) 0.09 15 24 0.20 16 28 
 DSVM 0.13 46 15 0.19 31 8 
 DSVM-DT2 0.10 26 20 0.19 25 17 
 DSVM-DT3 0.09 26 15 0.19 28 14 
gc       
 SVM (lin) 0.32 46 98 0.34 13 66 
 SVM (rad) 0.32 30 63 0.34 17 63 
 SVM (poly) 0.32 30 72 0.32 14 61 
 DSVM 0.30 37 106 0.33 17 70 
 DSVM-DT2 0.28 37 106 0.31 14 65 
 DSVM-DT3 0.28 37 106 0.31 14 65 
hrt       
 SVM (lin) 0.14 12 14 0.21 6 10 
 SVM (rad) 0.15 11 17 0.22 4 12 
 SVM (poly) 0.13 10 14 0.20 5 10 
 DSVM 0.12 8 15 0.20 8 8 
 DSVM-DT2 0.08 8 7 0.21 7 10 
 DSVM-DT3 0.05 5 5 0.21 7 10 
wbc       
 SVM (lin) 0.03 5 8 0.04 3 3 
 SVM (rad) 0.03 4 9 0.03 2 5 
 SVM (poly) 0.02 4 4 0.07 7 4 
 DSVM 0.02 10 4 0.04 7 2 
 DSVM-DT2 0.02 5 5 0.04 4 3 
 DSVM-DT3 0.02 5 4 0.04 5 3 

1 Results on the training set are calculated by means of 10-fold CV. 
2 We use bold face to highlight the classifier that provides the lowest BER 

for the respective data set. 
 
Table 2 reveals that DSVM’s predictions are competitive 

to standard SVM for all data sets. In addition, the quality of 
DSVM is further confirmed by comparing our results with 
other benchmarking studies [1, 7, 43] that have used the 
same data. Having verified the predictive accuracy of our 
DSVM implementation we consider cost-sensitivity in the 
following section.  

C. Cost-efficiency of DSVM 
DSVM provides a more explicit integration of 

misclassification errors avoiding the use of a continuous 
error proxy. Therefore, we can expect DSVM to outperform 
standard SVM in scenarios involving asymmetric 
misclassification costs since it facilitates direct cost-
minimization. In order to confirm this assumption we 
compare DSVM versus csSVM (6) under different cost-

distributions contrasting their capability to derive cost-
efficient predictions. 
We consider applications where a false alarm is less severe 
than missing a correct one. Let C+  denote the cost for a 
missed alarm, e.g. a bad credit risk, and C−  the costs for 
false alarm respectively. With no loss of generality we can 
set C−  to one and scale C+ accordingly. Obviously, there is 
some point C C+ −  where a classifier completely avoids 
the more expensive error type FN. A pre-test revealed that 
this point is reached at latest at a ratio of : 50 :1C C+ − =  for 
csSVM. Consequently our study incorporates cost 
distributions of : 2 :1C C+ − =  to 50:1. 

Aiming at a proximate translation of cost values into 
classifier parameters we considered a fixed setting for the 
c+  and c−  parameters in csSVM and DSVM, see (6) and 
(7), directly using the respective :C C+ − ratio. This de-
creases the number of free parameters and reflects the 
previously developed understanding of these parameters for 
DSVM. Subsequently, the remaining free parameter (kernel 
parameters and the trade-off parameter β ) are determined 
by means of 10-fold CV using the resulting misclassification 
costs as selection criterion. That is, the classifier providing 
minimal misclassification costs within 10-fold CV is 
selected and evaluated on the test set. This procedure is 
repeated for each :C C+ − ratio. Results are presented in 
Table 3.  

 
TABLE 3:  

RESULTS FOR CSSVM AND DSVM UNDER DIFFERENT COST-
DISTRIBUTIONS WITH FIXED COST PARAMETERIZATION 

 Results for csSVM  Results for DSVM 
Data set Training Test  Training Test 
Cost ratio FP FN FP FN  FP FN FP FN 
ac          
2:1-5:1 40 10 32 7  46 15 31 8 
6:1-10:1 50 10 36 6  49 11 34 7 
11:1-15:1 100 0 57 3  102 6 58 3 
16:1-20:1 120 0 68 3  141 3 74 3 
25:1-50:1* 130 0 70 2  142 2 74 2 
gc          
2:1-5:1 180 40 80 24  238 23 116 20 
6:1-10:1 320 10 153 5  377 3 188 4 
11:1-15:1 410 0 202 1  395 3 185 3 
16:1-20:1 450 0 219 0  400 2 185 3 
25:1-50:1* 450 0 221 0  400 2 185 3 
hrt          
2:1-5:1 20 1 13 7  24 6 13 7 
6:1-10:1 40 0 23 3  39 2 17 6 
11:1-15:1 50 0 26 1  49 2 22 3 
16:1-20:1 50 0 28 0  50 2 23 3 
25:1-50:1* 60 0 28 0  63 1 30 1 
wbc          
2:1-5:1 10 0 7 3  8 4 6 2 
6:1-10:1 20 0 10 1  10 4 6 2 
11:1-15:1 20 0 12 1  10 4 7 2 
16:1-20:1 30 0 13 2  13 4 7 2 
25:1-50:1* 40 0 15 1  22 2 11 1 

* We used a step size of 5 to increase asymmetry in cost distributions from 
a ratio of 20:1 onwards. Consequently, this group contains approximately 
the same number of elements as the other groups. 
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We aggregate the different cost ratios into five groups and 
report the number of false positive and false negative 
predictions instead of one unique misclassification cost. 
Further more, csSVMs with linear, polynomial and radial 
kernel as well as DSVM with various tree levels are 
averaged for brevity of presentation. 

The number of “expensive” false negative predictions is 
consistently decreased with increasing asymmetry of the 

:C C+ − ratio for both classifiers. In fact, this type of error 
almost vanishes in highly asymmetric settings. Surprisingly, 
such results are not only obtained for DSVM but for csSVM 
as well. For the hrt data set, csSVM even outperforms 
DSVM on the test set in terms of FN errors. Regarding the 
less severe FP error type (false alarm) DSVM is slightly 
better than csSVM giving superior predictions in 13 out of 
20 cases. While these results support our initial assumption 
that a direct integration of misclassification costs is suitable 
for DSVM, the competitive performance of csSVM has not 
been expected. On the one hand, this finding justifies the 
common application of csSVM for cost-sensitive learning. 
Further more, the overall low error rates actually motivate 
an adoption of our strategy for csSVM parameterization. 
The parameters c+  and c−  are routinely set to the reciprocal 
of the prior probability for the positive / negative class [27, 
29] and our results suggest that this rule of thumb can be 
extended to situations involving asymmetric misclassi-
fication costs. 

In order to evaluate the implications of such a tuning 
heuristic, we conduct a second line of experiments allowing 
any possible setting for c+  and c−  to obtain a cost minimal 
classifier for a given :C C+ − ratio. That is, we allow usage 
of a csSVM or DSVM classifier with parameters settings of 
e.g. 2c+ =  and 1c− =  even if the assumed application 
domain involves a cost ratio of : 50 :1C C+ − = . Con-
sequently, the number of free parameters is increased 
dramatically. Results are given in Table 4. 

Comparing Table 3 and Table 4 the larger number of free 
parameters has not helped to further improve csSVM results 
in general. We can observe a purer separation of the training 
data due to a larger number of degrees of freedom. 
Regarding to test set performance the number of FP errors 
has decreased at the cost of committing additional more 
severe FN errors. For the considered cost ratios this would 
induce overall higher misclassification costs. Consequently, 
the larger number of free parameters hinders effective model 
selection and leads to slightly deteriorate test results. This 
confirms that a proximate integration of misclassification 
costs is actually a good strategy for the considered data sets. 
In view of the fact, that there is to our best knowledge no 
broadly accepted procedure for SVM parameter setting in 
cost-sensitive scenarios, e.g. a cost-sensitive grid search, our 
results can be seen as a first step to develop a sophisticated 
tuning heuristic for csSVM. 
 

TABLE 4:  
RESULTS FOR CSSVM AND DSVM UNDER DIFFERENT COST-

DISTRIBUTIONS WITH FREE COST PARAMETERIZATION 
 Results for csSVM  Results for DSVM 
Data set Training Test  Training Test 
Cost ratio FP FN FP FN  FP FN FP FN 
ac          
2:1-5:1 50 10 33 7  50 10 34 7 
6:1-10:1 80 0 46 6  73 7 45 5 
11:1-15:1 80 0 46 6  113 2 63 3 
16:1-20:1 80 0 46 6  113 2 63 3 
25:1-50:1 80 0 46 6  142 1 76 2 
gc          
2:1-5:1 170 4 76 26  238 23 116 20 
6:1-10:1 350 0 168 2  377 3 188 4 
11:1-15:1 360 0 175 1  395 3 185 3 
16:1-20:1 360 0 175 1  400 2 185 3 
25:1-50:1 360 0 175 1  400 2 185 3 
hrt          
2:1-5:1 20 0 12 7  27 4 13 7 
6:1-10:1 20 0 13 6  34 2 16 6 
11:1-15:1 20 0 13 6  45 1 21 3 
16:1-20:1 20 0 13 6  60 0 28 0 
25:1-50:1 20 0 13 6  60 0 28 0 
wbc          
2:1-5:1 0 0 4 4  10 4 6 2 
6:1-10:1 0 0 4 4  21 2 10 2 
11:1-15:1 0 0 4 4  29 1 14 1 
16:1-20:1 0 0 4 4  29 1 14 1 
25:1-50:1 0 0 4 4  29 1 14 1 

 
Results for the DSVM classifier have not changed 

significantly. This is explained by the fact that DSVM does 
not provide a large number of free parameters beside c+  and 
c− . While the novel setting allows a broader value range for 
these parameters, this flexibility is obviously not exploited 
so that the results remain stable. This verifies that the 
previous setting, e.g. direct translation of misclassification 
costs into parameter values, is indeed appropriate for DSVM 
and that further improvements are hardly achievable. 

VI. CONCLUSIONS 
We considered the case of cost-sensitive learning using 

SVM classifiers. DSVM appeared to be a very promising 
candidate for such scenarios due to its accurate error 
measurement. On the other hand, csSVM is the standard 
formulation for cost-sensitive classification with SVMs. 
However, the usage of a continuous approximation of 
misclassification error puts csSVMs appropriateness into 
perspective. Therefore, we compared csSVM and DSVM 
within an empirical experiment to evaluate their capabilities 
to derive cost-efficient predictions. 

Our results confirmed that DSVM indeed provides highly 
accurate predictions when the distributions of mis-
classification error are uneven. In addition, we found 
csSVM to give surprisingly good results as well. In spite of 
its algorithmic treatment of classification errors, a direct 
translation of cost values into parameter settings emerged to 
be an efficient approach confirming and extending tuning 
heuristics for csSVM. 
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