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Abstract 

Data mining for customer relationship management involves the task of binary 
classification, e.g. to distinguish between customers who are likely to respond to 
direct mail and those who are not. The support vector machine (SVM) is a power-
ful learning technique for this kind of problem. To obtain good classification re-
sults the selection of an appropriate kernel function is crucial for SVM. Recently, 
the evolutionary construction of kernels by means of meta-heuristics has been pro-
posed to automate model selection. In this paper we consider genetic algorithms 
(GA) to generate SVM kernels in a data driven manner and investigate the poten-
tial of such hybrid algorithms with regard to classification accuracy, generalisation 
ability of the resulting classifier and computational efficiency. We contribute to 
the literature by: (1) extending current approaches for evolutionary constructed 
kernels; (2) investigating their adequacy in a real world business scenario; (3) con-
sidering runtime issues together with measures of classification effectiveness in a 
mutual framework. 

1 Introduction 

The support of managerial decision making in marketing applications is a com-
mon task for corporate data mining with classification playing a key role in this 
context [2]. The SVM [9] is a reliable classifier that has been successfully applied 
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to marketing related decision problems, e.g. [1; 10]. Like other learning algo-
rithms such as neural networks, the SVM algorithm offers some degrees of free-
doms that have to be determined within the data mining process. The selection of 
suitable parameters is crucial for effective classification. Therefore, we propose a 
data driven heuristic to determine the SVM parameters without manual interven-
tion. 

The remainder of this paper is organised as follows: Following a brief introduc-
tion to SVM theory we present our combination of GA and SVM (GA-SVM) in 
Section 3. The potential of GA-SVM is evaluated in a real world scenario of direct 
marketing in Section 4. Conclusions are given in Section 5. 

2 Support Vector Machines 

The SVM is a supervised learning machine to solve linear and non-linear classifi-
cation problems. Given a training set { } 1

; m
i i i

S y
=

= x where ix is a n-dimensional 
real vector and { 1, 1}iy ∈ − +  its corresponding class label, the task of classification 
is to learn a mapping i iyx from S, that allows the classification of new exam-
ples with unknown class membership. 

The SVM is a linear classifier of the form  

( )( )y sgn b= ⋅ +x w x , (1) 

which strives to maximise the margin of separation between the two classes [9]. 
The parameters w and b realising such a maximal margin hyperplane can be found 
by solving a quadratic optimisation problem with inequality constraints; e.g. [3]. 

In order to derive more general, non-linear decision surfaces SVMs implement 
the idea to map the input data into a high-dimensional feature space via an a priori 
chosen non-linear mapping function. Due to the fact, that the SVM optimisation 
problem contains the input patterns only as dot products, such a mapping can be 
accomplished implicitly by introducing a kernel function [3; 9] 

( , ) ( ) ( )i j i jK = Φ ⋅Φx x x x . (2) 

Beside the selection of an appropriate kernel and its corresponding kernel pa-
rameters, see Section 3, the SVM classifier offers one additional regularisation pa-
rameter C which controls the trade off between maximising the margin of separa-
tion and classifying the training set without error. 

3 Genetic algorithms for SVM model selection  

The classification performance of SVM depends heavily on the choice of a suit-
able kernel function and an adequate setting of the regularisation parameter C. 
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Consequently, we develop a data driven approach to determine the kernel K and 
its corresponding kernel parameters together with C by means of GA. Using the 
five basic kernels of Table 1, we construct a combined kernel function as  

1 1
poly rad sig imq anovaK K K K Kα β γ⊗ ⊗ ⊗ ⊗  , (3) 

with { };⊗∈ + ⋅ , where we exploit the fact that if K1 and K2 are kernels, 1 2K K+  
and 1 2K K⋅  are valid kernels as well [3]. 

Table 1. Basic SVM kernel functions 

Polynomial kernel ( ) ( ), ( )
c

poly i j i jK a b= ⋅ +x x x x  

Radial kernel ( ) ( )2
, exprad i j i jK a= − −x x x x  

Sigmoidal kernel ( ) ( ), tanh ( )sig i j i jK a b= ⋅ +x x x x  

Inverse multi-quadratic kernel ( ) 2 2, 1/imq i j i jK b= +x x x - x  

Anova kernel ( ) ( )( )2
, exp

c

anova i j i j
j

K a
⎛ ⎞

= −⎜ ⎟
⎝ ⎠
∑x x x - x  

 
To encode (3) into a structure suitable for GA based optimisation we use five 

integer genes for the kernel exponents in (3), four binary genes for the kernel 
combination operator ⊗ and sixteen real-valued genes for the specific kernel pa-
rameters (three per kernel) as well as the regularisation parameter C. The complete 
structure is given in Fig. 1. This coding is inspired by [7] and extends their ap-
proach to five kernels and the inclusion of C into the GA based optimisation. 

 

 
Fig. 1. Structure of the genotype for SVM kernel construction 

The GA is implemented in accordance with [8] and utilises a uniform crossover 
for the five kernel exponent genes. That is, all genes between two random points 
within this string are interchanged between two genotypes representing parents for 
the resulting two new genotypes. The mutation operator is implemented as a sim-
ple bit swap for the four kernel combination genes and a random increment or dec-
rement for all integer and real value genes. Crossover and mutation probabilities 
have been determined through pre-tests to 0.7 and 0.3 respectively. 
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4 Empirical evaluation 

4.1 Experimental setup 

The simulation experiment aims at comparing genetically constructed SVM with 
conventional ones to assess capabilities of GA to support SVM model selection. 

We consider the case of repeat purchase modelling in a direct marketing set-
ting, see e.g. [1; 10], using real world data from a German publishing house. The 
data set consists of 300,000 customer records that have been selected for a past 
mailing campaign to cross-sell an additional magazine subscription to customers 
that have subscribed to at least one periodical. Each customer is described by a 28-
dimensional vector of 9 numerical and 19 categorical attributes describing transac-
tional and demographic customer properties. The number of subscriptions sold in 
this campaign is given with 4,019, leading to a response rate of 1.35% which is 
deemed to be representative for the application domain. An additional target vari-
able indicates the class membership of each customer (class 1 for subscribers and 
class -1 for non subscribers) facilitating the application of supervised learning al-
gorithms to model a relationship between customer attributes and likelihood of re-
sponding to direct mail. 

Classifiers are evaluated applying a hold-out method of three disjoint datasets 
to control over-fitting and for out-of-sample evaluation. While training data is 
used for learning, i.e. determining the decision variables w and b, see (1), a valida-
tion set is used to steer the GA. That is, a classifier’s performance on the valida-
tion set represents its fitness and is used to select items for the mating pool within 
the GA [4]. The trained and selected classifiers are finally tested on an unknown 
hold-out set to evaluate their generalisation ability on unknown data. 

In order to assure computational feasibility and with regard to the vast imbal-
ance between class 1 and class -1 membership within our data set, we apply an 
undersampling approach [11] to obtain a training and validation data set of 4,144 
and 2,070 records respectively with equal class distributions. The test set consists 
of 65,000 records containing 912 class 1 customers, reflecting the original unequal 
distribution of the target variable. 

4.2 Experimental results 

In order to deliver good results GA usually require a large population size that en-
sures sufficient variability within the elements in the gene pool [8]. For GA-SVM 
we select a population size of 50 and monitor the progress in classification quality 
for 15 generations. Thus, 750 individual SVMs with genetic kernel are constructed 
on the training set, assessed on the validation set and finally evaluated on the test 
set. Since the skewed class distribution of the target variable prohibits the applica-
tion of standard performance metrics of classification accuracy [11], we used the 
G-metric instead [6]. Striving to maximise the class individual accuracies while 
keeping them balanced the G-metric is calculated as the geometric mean between 
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class individual accuracies. Consequently, higher values indicate improved predic-
tive accuracy. 

Results at the generation level are given in Table 2 where each value is calcu-
lated on the basis of the 50 individual GA-SVM classifiers within a generation. 

Table 2. Results of GA-SVM at the generation level over 15 generations 

 SVM performance by means of G-metric on 
 

Mean runtime  
per SVM [min] training set validation set test set 

Generation mean std.dev. mean std.dev. mean std.dev. mean std.dev. 
0 91.3 53.4 0.596 0.306 0.544 0.277 0.444 0.225 
1 71.2 37.0 0.731 0.158 0.661 0.145 0.534 0.111 
2 78.1 38.8 0.687 0.236 0.633 0.215 0.496 0.168 
3 77.8 27.9 0.754 0.158 0.685 0.142 0.528 0.110 
4 79.6 31.1 0.736 0.192 0.668 0.172 0.516 0.132 
5 76.0 27.8 0.759 0.158 0.684 0.142 0.527 0.110 
6 68.8 16.6 0.786 0.025 0.713 0.019 0.549 0.013 
7 77.3 31.9 0.785 0.030 0.714 0.015 0.547 0.012 
8 67.8 22.8 0.775 0.114 0.703 0.102 0.537 0.078 
9 65.1 21.7 0.768 0.115 0.696 0.105 0.539 0.079 
10 67.8 25.0 0.784 0.034 0.711 0.027 0.552 0.012 
11 64.2 11.2 0.795 0.008 0.721 0.012 0.551 0.009 
12 62.2 12.5 0.796 0.008 0.720 0.015 0.552 0.009 
13 59.6 12.5 0.791 0.014 0.716 0.019 0.553 0.010 
14 59.4 12.6 0.789 0.014 0.720 0.015 0.553 0.008 

 
Our results show a generally increasing average performance from generation 

to generation over all data sets. However, vast improvements are obtained only 
when moving from generation 0 to 1, indicating that a saturation level is reached 
early in the evolutionary process. In fact, while a oneway analysis of variance con-
firmed a highly significantly difference in mean performance over all data sets at 
the 0.001 level, a Tukey post hoc test revealed that only the generations 0 and 2 
differ from the remaining ones significantly at the 0.01 level. 

The decrease in standard deviation is more explicit and illustrates a higher simi-
larity within the gene pool. Interestingly, the average runtimes decrease tremen-
dously, meaning that the high quality kernels of later generations are also compu-
tationally more efficient. The best kernel was found in generation 14 with a test 
set G-value of 0.585 incorporating all base kernels but the anova kernel. 

To compare our approach with standard SVM we calculate solutions for the ra-
dial and polynomial SVM classifier, conducting an extensive grid search [5] in the 
range log(C) = {-4; 4} and log(a) = {-4; 4} with a step size of one for the radial 
kernel and log(C) = {-2; 3}, log(a) = {-2; -1}, b = {0; 1}, c = {2; 7} for the poly-
nomial kernel to obtain and average G-value of Gradial = (0.70; 0.58; 0.53) and 
Gpolynomial = (0.71; 0.65; 0.54) on training, validation and test sets. As expected, the 
higher flexibility of the combined kernel in GA-SVM allows a purer separation of 
the training set. Regarding generalisation, GA-SVM consistently outperforms 
classical SVM in later generations, providing superior results on the validation set 
from generation 3 and on the test set from generation 10 onwards. 
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5 Conclusions 

We investigated the potential of SVMs with GA-optimised kernel functions in a 
real world scenario of corporate decision making in marketing. Solving more than 
750 evolutionary constructed SVMs, the GA proved to be a promising tool for 
kernel construction, enhancing the predictive power of the resulting classifier. 
However, the vastly increased computational cost might be the main obstacle for 
practical applications. Most radial SVMs needed less than a minute to construct a 
solution and the runtime of polynomial SVMs ranged from 12 to 60 minutes. In 
contrast, we observed average GA-SVM runtimes of 60 to 90 minutes. 

Since the task of model selection shifts from setting SVM parameters to deter-
mining the parameters of the utilised search heuristic, the proposed GA is a prom-
ising candidate for SVM tuning, offering only four degrees of freedom on its own 
(crossover and mutation probabilities, population size, termination criterion e.g. 
number of generations). 

Further research involves the application of GA-SVM to other data sets as well 
as a detailed analysis and comparison of the constructed kernels per generation. 
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