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Abstract— In this paper, a combination of genetic algo-
rithms and support vector machines (SVMs) is proposed.
SVMs are used for solving classification tasks, whereas
genetic algorithms are optimization heuristics combining
direct and stochastic search within a solution space.
Here, the solution space is formed by combinations of
different SVM’s kernel functions and kernel parameters.
We investigate classification performance of evolutionary
constructed SVMs in a complex real-world scenario of
direct marketing.
Keywords: artificial support vector machine, classifica-
tion, genetic algorithm, data mining, decision support

I. Introduction

In this paper we investigate the application of evolu-
tionary constructed SVMs on an economic real-world
classification problem. The genetic component pro-
vides improved selection and parametrization of SVM’s
essential kernel function in order to achieve higher
classification accuracy.

The organization of this paper is as follows. In Sec-
tion II, the task of classification and the classification
method SVM in its standard form are briefly presented.
In Section III the main principles of genetic algorithms
are proposed. Both ideas are combined in Section IV.
The computational experiment for solving the real-
world classification task of response optimization in
direct marketing is specified in Section V. Results
and analyses are presented in Section VI. Section VII
concludes the paper with a summarization.

II. Classification and Support Vector Machines

Data driven methods from computational intelli-
gence share the common approach of learning machines
in classification for data mining [1]. Let all relevant
and measurable attributes of an object, e.g. a customer,
be combined as numerical values in~x. Let the the
input space withn objects be denoted in the setX =
{~x1, . . . ,~xn}. Each object belongs to a discrete class
y ∈ {−1;1} and we will refer to a pair(~x,y) as an
example of our classification problem. We presume
that it is impossible to model the relationship between
attribute vector~x and class membershipy directly, either
because it is unknown, too complex or corrupted by

noise. Presuming that a sufficient large set of examples
is available, a machine for supervised learning of the
mapping~x→ y can be incorporated.

The objective of a classification process is to modify
free parameters in order to find a specific learning
machine for modelling a generalizable causal relation-
ship of the problem structure from the learning data to
predict unseen examples based on their attribute values
x j . For most questions of parametrization only rules
of thumb are known. For a comprehensive discussion
readers are referred to e.g. [1–4].

A SVM in its basic form can be characterized as a
supervised learning machine for solving linear and non-
linear classification tasks. In a modified form a SVM
can solve regression tasks as well. It was introduced
by Vapnik based on fundamentals of statistical learning
theory and risk minimization [3–7]. Main building
blocks of SVMs are structural risk minimization, non-
linear optimization and duality as well as kernel in-
duced feature spaces, underlining the technique with
an exact mathematical framework.

The idea of support vector classification is to sep-
arate examples with a linear decision surface, maxi-
mizing the margin of separation between two different
classes. This leads to the following convex quadratic
programming problem – the primal form was omitted
for brevity, see e.g. [3].

max W(λ ) =
n

∑
i=1

λi −
1
2

n

∑
i, j=1

λiλ jyiy j(~xi ·~x j)

s.t. 0≤ λi ≤C ∀i = 1, . . . ,n
n

∑
i=1

λiyi = 0

(1)

Examples with positive Lagrangian multiplierλi are
called support vectors (SV). They define the separating
hyperplane.C is a constant regularization parameter,
enabling the user to control the trade-off between learn-
ing error and model complexity, regarded by the margin
of the separating hyperplane. The decision function for
classification can be evaluated in terms of dot products
between the pattern to be classified and the support



vectors withb being a threshold:

f (~x) = sgn

(

∑
i∈SV

λiyi(~x ·~xi)+b

)

. (2)

For constructing more general non-linear decision sur-
faces, SVMs implement the idea of mapping the input
vectors into a high-dimensional feature spaceΨ via an
a priori chosen non-linear mapping functionΦ : X →Ψ.
The construction of a separating hyperplane in feature
space leads to a non-linear decision boundary in input
space. Expensive calculation of dot productsΦ(~x) ·
Φ(~xi) in a high-dimensional space can be avoided by
introducing a kernel functionk(~x,~xi) = Φ(~x) ·Φ(~xi). An
illustration of aΦ-transformation from two-dimensional
input space with non-linear class boundary into three-
dimensional feature space enabling linear separation
with a hyperplane is given in Fig. 1.
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Fig. 1: Example ofΦ-transformation

The kernel representation allows computing the dot
product’s value in feature space without explicit cal-
culation of the mappingΦ. Leaving the algorithms
almost unchanged, this reduces numerical complexity
significantly and allows efficient support vector learning
for up to hundreds of thousand examples. Degrees of
freedom are significantly smaller for SVM, compared to
typical neural network paradigms like, e.g., multilayer
perceptrons. Furthermore, neural network architectures
can be modelled by SVMs with sigmoid or radial
kernel functions. Using SVM, the main freedom is
the choice of a kernel function with its corresponding
kernel parameters, influencing the speed of convergence
and the quality of results. Furthermore, the choice of the
cost parameterC is vital to obtain good classification
results for learning data as well as for hold-out data.

III. Genetic Algorithms

Genetic algorithms (GA), a subgroup of evolutionary
algorithms (EA), are meta-heuristics imitating the long-
term optimization process of the biological evolution

for solving mathematical optimization problems. They
are based upon Darwin’s idea of ’survival of the
fittest’. Problem solutions are abstract ’individuals’ in
a population. Each solution is evaluated by a fitness
function. The fitness value expresses survivability of a
solution, i.e. the probability of being a member of the
next population and generating ’children’ with similar
characteristics by handing down genetic information via
evolutionary mechanisms like reproduction, variation
and selection, respectively. Within GA, reproduction
and variation is achieved not only by mutation of genes
but also by the crossover operator. The latter combines
characteristics of two solutions in order to get two new
solutions. The coding of the problem into a genetic
representation, e.g. the sequence of the phenotype’s
parameters on a genotype, is crucial to the performance
of the GA. Moreover, the fitness function has great
impact on performance (see e.g. [8–10] for an overview
and more detailed criteria for efficient promising GA
approaches, e.g. completeness, compactness and short
schemata).

IV. Support Vector Machines in Combination with
Genetic Algorithms

In conjunction with SVM, EA can be used for solv-
ing problems like, e.g., construction of an appropriate
kernel function, optimization of the SVM’s parameters
and/or for determination of the most reasonable input
data. Combinations of EA and SVM for solving classi-
fication tasks can be found e. g. in [11–15]. We develop
a new GA-SVM, extending the approach of Ohn et al.
[11–13].

In our experiment the kernel function and its param-
eters are subject of evolution. We construct the kernel as
combination of five possible kernels with an additive or
a multiplicative operator. The five basic kernel functions
are

• polynomial
kpoly(~x,~xi) = (a~x ·~xi +b)c

• radial
krad(~x,~xi) = exp(−a‖~x−~xi‖

2)

• sigmoid
ksig(~x,~xi) = tanh(a(~x ·~xi)+b)

• inverse multi-quadratic
kimq(~x,~xi) = 1/

√

‖~x−~xi‖2 +b2

• anova
kanova(~x,~xi) =

(

∑ j exp(−a(~x j −~xi j )
2)
)c

The sum as well as the product of two kernels is a
new valid kernel fulfilling the necessary Mercer con-
ditions [3]. Therefore, our constructed kernel function
has the following structure with⊗ ∈ {+, ·}:

k1
poly⊗kα

rad⊗kβ
sig⊗kγ

imq⊗k1
anova.



We have the following encoding of genotype, chro-
mosomes and genes, respectively:

• chromosome for exponents of each kernel function
(5 integer genes)
Each gene can encode an integer in the interval of
[0, . . . ,7] except genes for polynomial and anova
kernel having an exponent naturally. Those coeffi-
cients are fixed to 1.

• chromosome for operator⊗ aggregating two ker-
nels by addition or multiplication (4 binary genes)

• chromosome for up to three parametersa,b,c for
each kernel (3 decimal genes), resulting in a total
of 15 genes

• chromosome for regularization parameterC
(1 decimal gene)

The complete structure of the genotype with its chro-
mosomes and genes is illustrated in Fig. 2.
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Fig. 2: Chromosomes with genes

The GA-based development of SVMs is an iterative
process. A SVM is constructed by transferring the
genotype’s genetic code into a phenotype, i.e. a SVM
with a well defined kernel function and valid param-
eters. After learning and (cross-)validation, a SVM is
evaluated by a fitness function. Genetic operations use
this quality information for building a new population
of SVMs, which are trained and evaluated again. Thus,
the whole learning process can be seen as subdivided
into a microscopic cycle for learning of a SVM and a
macroscopic evolutionary one. This process (Fig. 3) is
principally quite similar to the process of evolutionary
constructing artificial neural nets (see e.g. [16, 17]).
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Fig. 3: Evolution of SVMs by GA

The superordinated evolutionary learning process is
guided by the fitness function representing the user’s
objective. Thus, the formulation of an appropriate fit-
ness function highly depends on the specific problem
to be solved. Since our dataset incorporates severely
imbalanced class distributions we use the geometric
mean G of the accuracy on class−1 and class 1,
i.e. the classification rate on each class for evaluation
of classification performance of an individual SVM.
[18, 19]:

G =
√

CR(−1) ·CR(1) (3)

with CR(y) =n+
y /my

n+
y denoting the number of patterns

of classy that are classified
as member of classy (correct)

my denoting the number of all
patterns belonging to classy

Results obtained on the training and validation set are
used to guide the search of the GA. In general, it
is desirable that a classifier separates the training set
with few errors whereas an additional validation set
is required to prevent overfitting. To incorporate these
ideas into a single metric we combine theseG-values
on learning and validation datasets by calculating their
arithmetic mean within our fitness function for GA:

F =
G learn+G validation

2
. (4)

Whereas the fitness function is used for selection
of solutions for reproduction, the reproduction itself is
conducted by means of mutation and crossover. The
selection is implemented as tournament selection with a
tournament size 2. Furthermore, an elitist mechanism is
applied in order to ensure that the best SVM is member
of the next generation. The crossover operator is imple-
mented as uniform crossover, i.e. all genes between two
random points within a chromosome are interchanged
between two genotypes representing parents for the
resulting two new genotypes. [20, 21]

Crossover is potentially applied to chromosomes
for kernel aggregation and kernel exponent, whereas
mutation can be applied to all chromosomes. The actual
application of a genetic operation depends on user-
defined rates. A high rate for crossing over and low rate
for mutation are recommended. We set the crossover
rate to 0.7 and the mutation rate for one gene to 0.3.
Mutation is implemented as a stepwise increment or
decrement with a specific stepsize resulting in a new
value within minimum and maximum limits. Binary
genes are mutated by flipping 0 to 1 and vice versa.



V. Computational Experiment – Response Opti-
mization

The simulation experiments aim at empirical eval-
uation of the improvements of SVMs by means of
GA. Without doubt, SVMs provide excellent results
for classification tasks in different fields of application.
Furthermore, GAs are well established for optimization
tasks. What is the impact of a combination of these two
algorithms? From the point of theory, results of GA-
SVM should outperform manually constructed SVMs
due to evolution-based intelligent search heuristics.
From the point of practice, the high computational
power being necessary for computation of enough
phenotypes in order to get a meaningful evolutionary
process might be the main obstacle for applications in
time-critical fields.

The available experimental data consist of 300,000
customer records of a large German publishing house,
which were selected for a past mailing campaign. The
campaign aimed at cross-selling an additional magazine
subscription to existing customers with at least one
periodical subscription. The number of subscriptions
sold in that campaign is given with 4,019, resulting in
a response quote of 1.34 %. This quote is deemed rep-
resentative for the application domain. The data set of
28 variables contains 9 numerical, continues attributes
and 19 categorical attributes describing demographic
and transaction oriented customer properties. An addi-
tional binary target variable indicates if the respective
customer subscribed to a magazine after receiving the
mailing (class 1) or not (class -1). In order to select
profitable customers for an upcoming campaign, i.e.
customers with high probability of responding to a
solicitation, it is common practice to use supervised
learning algorithms to predict the class membership of
each customer.

All experiments are evaluated applying a hold-out
method, using three disjoint datasets in order to control
over-fitting and allow out-of-sample evaluation. While
training data is used for learning, i.e. parameterizing
the methods to adjust class boundaries, a second set
is used for validating the classifiers’ performances to
guide the learning process and for model selection. The
trained and selected classifiers are finally tested on an
unknown hold-out set to evaluate their generalization
ability similar to estimate their performance in a real
world scenario on unknown data.

The three data sets are constructed as follows. At
first, a set of 65,000 records was randomly chosen
out of the total 300,000 records, building an isolated
hold-out set for generalization test. Statistically, thisset
should include approximately 1.34 % (=871) responders
(class 1). In fact the set is partitioned into 912 members
of class 1 and 64,088 members of class -1. The size

of this set accounts for a reasonable high number of
responders’ records being in the learning and test sets
used for model building as well as for keeping the
record number not too high in order to save computing
time. The second step concentrates on full usage of
the remaining 3,107 responders. Two-thirds (2,072) are
randomly chosen and assigned to the learning set. The
rest (1,035) forms a part of the validation set. Since the
ratio between class 1 customers and class -1 customers
in the data set is heavily skewed we made use of
undersampling for equating the number of randomly
chosen records of inactive customers with the number
of responders in each set. The idea of undersampling is
to increase the ratio of the minority class in the learning
set to increase the classifier’s sensitivity for this class
[22]. This approach creates an evenly balanced learning
set of 4,144 records and a validation set of 2,070
records. Table I shows the resulting sizes and structures
of the data set.

Table I: Data set structure and size for simulation
experiments

data set number of
label records class data set usage

2,072 1 set parameters of alllearning
2,072 -1 learning algorithms

1,035 1validation
1,035 -1

supervise training process

912 1 out-of-sample evaluationhold-out
64,088 -1 of classifier performance

(generalization)

Using a single number encoding approach, all cat-
egories are transformed to numerical values in an
initial pre-processing step. Following, all attributes are
scaled into the interval [-1,1] to account for different
measurement levels and number ranges. [23–25]

VI. Experimental Results

In order to deliver good results GA usually requires
a large population size that ensures sufficient variability
within the elements in the gene pool. For GA-SVM we
select a population size of 50 and monitor the progress
in classification quality by means of theG-metric for
16 generations. Thus, 16· 50 = 800 individual SVMs
with genetic kernel are constructed on the training set,
assessed on the validation set and finally evaluated on
the test set. Detailed results on the generation level are
given in Table II on the next page. The first column of
Table II gives the number of the respective GA genera-
tion. Following, the mean runtime per SVM as well as
mean, maximum, minimum and standard deviation of
theG-metric are reported. These were calculated on the
basis of the 50 individual GA-SVM classifiers within



Table II: Results of GA-SVM on generation level
Mean runtime G-metric on training/validation set G-metric on generalization set

Generation per SVM [min] mean max min std.dev. mean max min std.dev. Similarity

0 47.64 0.6820 0.89 0.08 0.2204 0.3539 0.53 0.09 0.1256 1.7001
1 46.57 0.7467 0.89 0.06 0.1942 0.3984 0.53 0.05 0.1034 2.2817
2 46.51 0.8229 0.89 0.49 0.1102 0.4373 0.51 0.34 0.0356 1.8231
3 47.67 0.8583 0.89 0.52 0.0794 0.4337 0.51 0.22 0.0381 1.8398
4 49.58 0.8749 0.89 0.70 0.0305 0.4359 0.48 0.35 0.0152 1.8166
5 50.75 0.8391 0.89 0.32 0.1298 0.4251 0.53 0.14 0.0634 1.9767
6 48.23 0.8736 0.89 0.67 0.0489 0.4298 0.50 0.12 0.0541 1.5291
7 46.79 0.8441 0.89 0.51 0.0988 0.4409 0.51 0.22 0.0427 2.1306
8 46.57 0.8588 0.89 0.55 0.0749 0.4436 0.50 0.40 0.0200 2.3792
9 47.14 0.8616 0.89 0.51 0.0811 0.4449 0.51 0.42 0.0190 2.1037

10 47.95 0.8539 0.89 0.51 0.0954 0.4400 0.53 0.30 0.0316 2.3666
11 47.31 0.8626 0.89 0.58 0.0674 0.4372 0.52 0.22 0.0392 2.2904
12 47.85 0.8670 0.89 0.62 0.0483 0.4363 0.52 0.22 0.0368 1.6356
13 46.84 0.8451 0.89 0.52 0.1030 0.4416 0.52 0.28 0.0334 1.7407
14 49.61 0.8518 0.89 0.52 0.0910 0.4443 0.50 0.41 0.0185 2.2396
15 47.33 0.8457 0.89 0.51 0.0985 0.4350 0.50 0.17 0.0501 2.5081

each population. While the results in the first four
columns reflect the combined performance on training
and validation set (meanG-metric (3)) the subsequently
assessments were obtained on the generalization set.

Noteworthy, the maximumG-metric on learn-
ing/validation is identical over all generations. This
originates from our elitist selection, because a high
quality kernel was found by chance in the first gen-
eration. The evolution of the meanG-values on train-
ing/validation and generalization set is plotted in Fig. 4.
The chart supports the impression that good results
are obtained early in the process. Consequently, the
improvements in performance are highest in the first
three generations and then reach a saturation level
without further advancements.
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Fig. 4: G-values for GA-SVM

To verify if this development is due to increased sim-
ilarity among the genotypes within the population we
calculate a similarity measure (last column in Table II)
which is based on the standard deviation between the
Euclidian norms of the chromosome vectors within the
respective generation. Similarity values are scaled into

interval [0,4] for absolute similarity (0) to absolute dis-
similarity (4), so that we observe a moderate similarity
in each generation without a clear trend. Hence, further
research is needed to clarify whether GA-SVM usually
requires only a few generations or whether this result
is valid for the considered data set only.

To evaluate the effectiveness of GA-SVM as a
technique for model selection we compared our results
to a standard SVM classifier with radial kernel function.
Conducting a simple grid search [26] in the range
log(C) = {−2,1,0,1,2} and log(γ) = {−2,1,0,1,2}
we calculated 25 solutions for the standard SVM on
the same data sets; results for generalization set are
given in Table III. Results on learning/validation set
are omitted for brevity but show a similar trend.

Standard SVMs’ mean generalization setG-value
is always lower than those of GA-SVM. A one-tailed
pooled variance T-Test revealed that this inferiority is
statistically significant at the 0.05 level in nine out
of fifteen cases. A previously conducted F-test con-
firmed the assumption of identical variances. Another
important criterion beside test set effectiveness is the
stability of the resulting classifier. In a real world
application the decision maker selects the classifier with
highest validation set performance to predict the class
membership of new examples. Consequently, a high
correlation between validation and test set performance
is required to ensure that the right classifier will be
selected in this scenario. Since the Pearson correlation
coefficient between learning/validation setG-value and
generalization setG-value for standard SVM is again
always lower than those of GA-SVM we can conclude
that GA-SVM not only delivers more accurate results
but also more stable ones.



Table III: Results of GA-SVM – grid search – generalization set
Correlation

Generalization set results learning/validation
Mean G-value Significance vs. generalization

Generation GA-SVM SVM (0.05 level) GA-SVM SVM

0 0.3539 0.3454 0,8245
1 0.3984 0.0284 0.7154
2 0.4373 0.0332 0.8818
3 0.4337 0.0183 0.8939
4 0.4359 0.0351 0.9849
5 0.4251 0.1670 0.9045
6 0.4298 0.0103 0.9304
7 0.4409 0.3274 0.0124 0.8332 0.6524
8 0.4436 0.1318 0.9535
9 0.4449 0.0214 0.9187

10 0.4400 0.0612 0.8979
11 0.4372 0.1074 0.9452
12 0.4363 0.0156 0.9442
13 0.4416 0.0911 0.9216
14 0.4443 0.2075 0.7814
15 0.4350 0.0185 0.8709

italic: significant at 0.05 level

VII. Conclusion

In this paper we extended state-of-the-art approaches
for SVMs with evolutionary optimized kernel func-
tion including additional kernel functions and SVMs
regularization parameter in the genetic kernel. Solving
more than 800 evolutionary constructed SVMs we find
that our GA-SVM provides indeed more accurate and
stable results than standard SVM with radial kernel.
While this finding confirms previous results with GA-
SVM this is to our best knowledge the first attempt to
apply GA-SVM to a real world scenario of corporate
decision making. However, the improvements of the
method come at a high computational cost. While the
standard SVM needs less than a minute to construct a
solution, the average run-time of GA-SVM lies between
45 and 50 minutes (P4, 3 GHz, 1 GB RAM). The com-
putationally expensive evaluation of the genetic kernel
questions the applicability of GA-SVM in large scale
application. To some extend, the parallelization of GA-
SVM could help to mitigate this shortcoming but would
increase the complexity of the overall infrastructure.
The possible potential of new techniques for efficient
calculation and caching of genetic kernels has to be
investigated in further research.
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