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Abstract— In the domain of classification tasks, ar-
tificial neural nets (ANNs) are prominent data mining
methods. Paradigms like learning vector quantization
(LVQ) and probabilistic neural net (PNN) are suitable
classifiers. In this paper, new approaches of evolutionary
optimized LVQs and PNNs are proposed. Their classi-
fication accuracy is compared with results of standard
PNN and LVQ. The complex real-world scenario includes
planning of retail stores. Branch locations are classified
in terms of revenue and profit. Results are based on data
reflecting external infrastructure and internal aspects of
existing branches. They support decisions about establish-
ing, modifying or closing down a store.
Keywords: artificial neural networks, classification, genetic
algorithm, data mining, decision support

I. Introduction

This paper focuses on the application of evolution-
ary built ANNs for solving an economic real-world
classification problem. The genetic component of the
approach provides improved input selection in order
to achieve higher classification accuracy. For compar-
ison, manually parameterized standard LVQs, enhanced
LVQs and PNNs are applied, too. Locations of retail
stores are classified in terms of sales volume to support
decisions having strong impact on large investments for
opening a new store or closing down an existing one.
This decision on a location has long-term character and
induces high fix costs, whereas more detailed decisions
on in-store design and assortment of a certain store are
more flexible. Furthermore, these decisions can more
easily be revised in case of an unprofitable decision.
All decisions have impact on sales quantity and on the
company’s important cash flow.

The organization of this paper is as follows. In
Section II, the classifiers LVQ and PNN in their standard
forms are presented. In Section III the new combination
of genetic algorithms and slightly modified LVQ and
PNN algorithms is shown. The importance of fitness
functions is discussed. The real-world problem to eval-
uate locations for retail stores and to make decisions on
the in-store design and assortment is briefly described
in Section IV and formulated as classification task. The
real-world scenario and computational experiments are
described and the main results are presented. Section V

summarizes the paper and shows perspectives for further
research.

II. Classification with Artificial Neural Nets

A. Classification with Learning Machines

Let all relevant and measurable attributes of an
object, e.g. a location, be combined as numerical values
in ~x. Let the the input space withn objects be denoted
in the setX = {~x1, . . . ,~xn}. Each object belongs to a dis-
crete classy∈{−1;1}. A pair (~x,y) is an example of our
classification problem. We presume that it is impossible
to model the relationship between attributes~x and class
membershipy directly, either because it is unknown,
too complex or corrupted by noise. With a sufficient
large set of examples, a machine for supervised learn-
ing of the mapping~x → y can be incorporated. The
objective of a classification process is to modify free
parameters in order to find a specific learning machine
that models a generalizable causal relationship of the
problem structure from the learning data to predict
unseen examples based on their attribute valuesx j . For
most questions of parametrization only rules of thumb
are known. For a comprehensive discussion readers are
referred to e.g. [1–4]. In the following subsections we
propose two different neural network paradigms for
solving classification tasks.

B. Learning Vector Quantization

LVQ is a supervised nearest neighbor pattern clas-
sifier. In terms of ANNs, a LVQ is a feedforward,
hetero-associative, winner-takes-all network, related to
selforganizing maps [5]. The basic LVQ is composed
of an input layer with one neuron per input variable,
a Kohonen layer with neurons learning and performing
the classification, and an output layer with one node for
each class to be recognized. The number of the hidden
neurons is either predisposed by the user or dynamically
determined by enhanced algorithms.

The weight vector of the weights between all input
neurons and a hidden neuronj is called a codebook
vector (CV)~w j , representing a labelled region in input
space. During the learning process, weights are modified
in accordance with adapting rules. The basic LVQ



algorithm rewards correct classifications by moving the
’winner’ ~ww – the CV which is nearest to the presented
input vector~x – towards~x, whereas incorrect classi-
fications are punished by moving the CV in opposite
direction. Thus, presented patterns attract prototypes
of the correct class. Prototypes of other classes are
repelled. Since class boundaries depend on CVs, they
are adjusted during the learning process. The resulting
Voronoï tessellation of input space is optimal if all data
within a CV’s cell indeed belong to the same class.

Classification is based on a presented sample’s vicin-
ity to the CVs: a sample gets the label from the
nearest CV. The heuristic algorithms are based on a
distance function expressing the degree of similarity
between presented input vector and CVs. Usually the
Euclidean distance is used. Therefore, the definition
of class boundaries by LVQ is strongly dependent on
the distance function, the start positions of CVs, their
adjustment rules and also the pre-selection of distinctive
input features.

The basic LVQ1 suffers from various shortcomings.
Various variants and extensions of the basic LVQ
algorithms have been developed to overcome them,
e.g. Kohonen’s Optimized LVQ1, LVQ2, LVQ2.1 and
LVQ3. For a comprehensive overview and also details
of LVQ, readers are referred to standard ANN literature,
e.g. [6, 7]. More detailed information can be found in
the work of Kohonen. Specialized topics are outlined
e.g. in [8, 9]. An overview of statistical and neural
approaches for pattern classification is given in e.g.
[10–13]. Several extensions of standard algorithms are
suggested by various authors, see e.g. [14–25].

C. Probabilistic Neural Net

The paradigm of PNN was introduced by Specht [26–
28]. A PNN implements a Bayesian classifier based on
density estimation for minimizing the risk of misclassi-
fication. A-priori probabilitiesprob(yi) being necessary
for Bayesian classifiers are either known or can be esti-
mated directly from learning set. The PNN is aiming at
the nonparametric estimating of the necessary but usu-
ally unknown class specific probability density functions
fi(~x) = prob(~x j |yi) for each class. The PNN implements
the Parzen windows, based on Parzen’s one-dimensional
approach and its multidimensional extension. [29–31]
Parzen estimation builds probability density functions
over feature space for each class. Thus, the chance a
given sample lies within a given class can be computed.
Combined with the relative frequency of each class, a
PNN selects the most likely class for a given input
vector ~x. Using exponential Gaussian functions, the
estimation for classyi with ni samples of this class is
the sum ofni Gaussian functions:
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function is typically used based on experience and
due to its easy implementation. Smoothing parameter
σ is used for control of decision regions. Largeσ -
values result in continuous, shallow, rolling regions with
σ → ∞ leading to a hyperplane, smaller values cause
jagged regions withσ → 0 leading to a nearest neighbor
classifier. Figure 1 illustrates this effect. Hence,σ has
impact on the generality of decision boundaries. For
further discussion of PNN and Parzen windows see e.g.
[6, 7, 11, 12, 29, 32]

(a) smallσ (b) largeσ

Fig. 1: Different values ofσ leading to different
activities and decision regions

Since we are not interested in the absolute density
values but only in their proportions, the simplified
function

fi(~x) =
1
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2
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can be used with equalσ for all classes instead of the
traditional function (1). A non-exponential alternative
for saving computation time is calculating11+φ instead

of e−φ/σ2
in (2).

Illustrative interpretation of the density estimator as
neural net helps in understanding and enforces accep-
tance of users. The Parzen estimator PNN is a super-
vised feedforward neural net consisting of four layers.
The input layer is build of one neuron per input variable.
Each normalized sample is represented by a weight
vector from all input neurons to one hidden neuron
in the next pattern layer. A weight vector represents
the center of a Parzen window. In the next layer a
neuron for each class summarizes all outputs of the
hidden neurons – i.e. the results of their exponential
activity function – being assigned to one class. The
result is a class specific probability density estimation.
Output neurons indicate the resulting class. Since each
learning sample is represented by a neuron of the pattern



layer, each sample is presented once in a one-pass-
learning approach. Therefore, the size of the pattern
layer is determined by the number of samples. Beside
of choice of input variables, the only degree of freedom
is the value ofσ which can easily be modified without
relearning.

III. Evolutionary Neural Classifiers

A. Genetic Learning Vector Quantization and Ge-
netic Probabilistic Neural Net

Genetic algorithms (GA), a subgroup of evolution-
ary algorithms are meta-heuristics imitating the long-
term optimization process of biological evolution for
solving mathematical optimization problems based upon
Darwin’s ’survival of the fittest’. Problem solutions are
abstract ’individuals’ in a population. Each solution
is evaluated by a fitness function. The fitness value
expresses survivability of a solution, i.e. the probability
of being a member of the next population and gener-
ating ’children’ with similar characteristics by handing
down genetic information via evolutionary mechanisms
like reproduction, variation and selection, respectively.
Genotypes are varied not only by mutation of genes
within a single chromosome but also by crossing over,
combining characteristics of two solutions in order to
get two new solutions. In conjunction with neural nets,
GAs can be used for optimization of a net’s weight
matrix, the topology or the net parameters, or for deter-
mination of the most reasonable input data. The coding
of the problem into a genetic representation, e.g. the
sequence of the phenotype’s parameters on a genotype,
is crucial to the performance of the GA (see e.g. [33–
35] for an overview and more detailed criteria for
efficient promising GA approaches, e.g. completeness,
compactness and short schemata).

The GA-based development of ANNs is an itera-
tive process. A net is constructed by transferring the
genotype’s genetic code into a phenotype, i.e. a neural
net. After learning (and cross-validation if appropri-
ate), a net is evaluated by a fitness function. Based
on this quality information, genetic operations build
a new population of nets, which are trained, tested
and evaluated again. Thus, the entire learning process
can be seen as subdivided into a microscopic cycle
of net’s learning and a macroscopic evolutionary one.
The iterative learning process of ANNs itself is a part
of the entire development process for ANNs, starting
from problem modelling and ending at application and
maintenance of a net [36].

Combinations of GAs and LVQ can be found e.g. as
G-LVQ in [37] or as LVQ-GA in [38]. G-LVQ aims at
an improvement of number and initial position of hidden
neurons for optimizing classification accuracy, net’s size
and data representation separately. LVQ-GA uses a
binary gene representation for input data selection, and

an integer coding for determination of the number and
initial positions of hidden neurons.

We develop a new GA-LVQ, similar to LVQ-GA, and
a new GA-PNN. Within genotypes, those net parameters
are encoded that have to be genetically varied in order
to get net variations. For GA-LVQ and GA-PNN, the
importance or influence of input variables is encoded by
decimal values controlling ’activity’ of input neurons.
They affect the algorithm’s central measure of distance
between weight vectors and input vectors by weighting
components of the Euclidean distance. Furthermore, for
GA-PNN the σ -parameter is part of the genotype. A
PNN has a fixed number of hidden neurons determined
by the number of learning samples, whereas LVQ’s
number of hidden neurons can be varied. For GA-LVQ
this number is coded directly. The initial positions of
hidden neurons nearby or equal to learning patterns are
encoded by a random seed with influence on initial-
ization process. Finer parameters of LVQ, e.g. number
of learning iterations, learning rate or window width,
can be encoded principally, but are not used in our
experiments. The number of output neurons is externally
determined by the number of classes. A binary encoding
of input neurons allows only binary decisions, whether
an input value is used for classification – the input
neuron is active – or not. The decimal encoding includes
and refines the rough binary coding. It allows gradua-
tion, implemented by weighting the values of an input
feature for calculating the distance, the crucial factor for
the results of distance based classifiers. For each input
neuroni a decimal weightψi with 0≤ψi ≤ 1 is encoded
on a gene. A rough graduation seems to be sufficient,
e.g. ψi ∈ {0;0.25;0.5;0.75;1}, ψi ∈ {0;0.1;. . . ;0.9;1}
or even finer. Withψi ∈ {0;1}, the decimal coding
is equivalent to binary coding. This relevance weight
ψi is used in calculation of a modified weightedL2-

norm ‖.‖ψ
2 ‖~x‖ψ

2 = +
√

∑N
i=1x2

i ψi . The typically used
Euclidean distanceφE is substituted by a weighted
Euclidean distanceφψ between two vectors~a and~b
using these relevance weights:

φψ(~a,~b) = ‖~a−~b‖ψ
2 = +

√

N

∑
i=1

(ai −bi)
2ψi .

φψ = φE is valid for ψi = 1. Theψ-weighting of feature
i influences the feature’s impact on the distance by
shortening its distance component more (with low factor
ψi) or less (with high factorψi).

Genetic operators are one- or two-point-crossover
and mutation. Crossover is only applied to the chro-
mosome that encodes the input neurons in order to get
only genotypes that lead to valid, applicable phenotypes.
Furthermore, this gene section can also be varied by
mutation of a single gene, inversion of a gene sequence
or exchange of two genes. Those genes, that encode
the number of hidden neurons and the initialization



parameter, or the value ofσ respectively, are varied by
mutation only, i.e. adding or subtracting a value within
a valid range. A high rate for crossover and a low rate
for mutation are recommended.

A destabilization is implemented for support of au-
tomatization. It interrupts an optimum search being too
local and makes the GA more flexible. Here, destabi-
lization means death of accidentally selected individu-
als and replacement with accidentally constructed new
ones. It occurs if a critical fraction of identical or similar
individuals exists within a population. The number of
individuals to be taken into the new population can
be controlled by a rate of survival. A rate of null is
equivalent to a restart of an experiment.

B. Fitness Function

The fitness function is the crucial factor for evalua-
tion and evolution of neural nets providing satisfactory
and stable results in real-world applications. A fitness
function should favor ANNs with satisfactory general-
ization ability without using generalization data in order
to select useful nets systematically instead of acciden-
tally. Furthermore, the fitness function should represent
the user’s objective. In conjunction with ANNs, it
allows for evaluation and control of the superordinated
evolutionary learning process, thus enhancing the goals
nets’ algorithms are aiming at. The mean classification
rate (MCR) may be sufficient for some classification
tasks. Taking misclassification costs into account seems
to be more versatile and also realistic (see e.g. [39]
with application of asymmetric costs for time series pre-
diction). A fitness functionF for three-class-problems
can be e.g. one of the following exemplary ones (with
n+

y as number of correctly classified pattern of classy,
my as number of all patterns belonging to classy and
CRy = n+

y /my), applied to a learning subset (or better a
hold-out subset) of data:

F = MCR= (CR1 +CR2 +CR3)/3 (3)

F = CR1 ·CR3 or
√

. . . (4)

F = CR1 ·CR2 ·CR3 or 3
√

. . . (5)

F = MCRlearn·MCRvalidation or
√

. . . (6)

Fitness function (4) aims at uniform high classifi-
cation rates for classes 1 and 3, whereas fitness (5)
favors consistent classification rates for all three classes.
Functions aiming at even results on two different subsets
of data can be constructed too, see e.g. fitness (6).
Besides these direct performance measures in terms
of classification rates, a fitness function can include
costs for net complexity, e.g. expressed as number of
input variables and/or hidden neurons [38]. In general,
less complexity leads to better generalization. Thus, the
formulation of an appropriate fitness function highly
depends on the specific problem to be solved.

Capability of the nets and the fitness function can be
evaluated graphically. Results are sorted in descending
order of the fitness value (in case of maximizing fitness).
The separate charting of fitness values or classification
rates for learning, validation and generalization data
sets in a two-dimensional scatter diagram allows for
evaluation of correlation between the fitness used to
control the evolutionary process and the fitness for
unknown ’real’ data. Ideally, all results are rudimentary
proportional (see s-curve in Fig. 2(a)). A net with
high fitness value also yields a satisfactory result for
unknown data. Hence, it can be reasonably selected for
real application. Fig. 2(b) shows the contrast: deriving
a good generalization result from a high fitness is
impossible. Nets with good results in application are not
preferred systematically within the evolutionary process.
A selected net is more or less arbitrarily good or poor.

fitness (e.g. average classification rate)

rank

validation data
generalization data

(a) ideal distributions

fitness (e.g. average classification rate)

rank

validation data
generalization data

(b) poor generalization and/or
improper fitness function

Fig. 2: Validation and corresponding generalization

The simplest criterion for selection of parents is the
fitness value of a single net. Alternatively, a group of
some LVQs differing in their initialization value only
can be considered in order to make evaluation more
independent from the LVQ’s initialization. The group’s
fitness can be calculated as arithmetic mean of the single
values of each LVQ. For a focus more on the impact
of a certain initialization value, only the best fitness
within a group can be used as selection criterion. Time
consuming computations for different initializations can
be supported well by parallel implementation of the
algorithms (see next Sect. III-C). The selection itself is
implemented as the multi-purpose tournament selection.
For details of GA-LVQ, GA-PNN and the complete
ANN model building process see [36, 40].

C. Parallelized Implementation

A higher computational performance, i.e. a higher
number of calculated nets per time unit, can be achieved
by parallelization, providing more results. This allows
for a more valid evaluation and analysis of the al-
gorithms’ quality. Combinations of data sets and/or
individuals of a population can be calculated simultane-
ously, with variations of initialization for LVQs being
coded in a LVQ’s genotype. The nets can be computed
in a scalable PC network with one server adminis-
trating the population and the genetic algorithm, and



LVQ/PNN-clients getting instructions from the server
for computing neural nets and delivering the fitness
value. We implement our algorithms of server and client
for parallelized GA-LVQ and GA-PNN in C and Visual
Basic. At the moment, GA-LVQ supports LVQ1 and
LVQ2.1. Verifying experiments succeed: GA-LVQ and
GA-PNN are applied to the iris dataset with additional
useless input variables, that are correctly recognized and
eliminated byψ-weights= 0.

IV. Empirical Evaluation – Real-world Scenario

A. Evaluation of Retail Stores

For the evaluation of a location of an existing store
in terms of sales volume or of an eligible location of a
newly planned store, a more or less rough classification
of expected sales volume is sufficient [36]. Therefore,
estimating the sales volume is a classification problem.
Results of a classification process should be used as
completion of knowledge of human experts, e.g. for
building a priority list for locations to be inspected in
detail, not as substitution for invaluable human skills.

The data pool consists of external macroscopic up-to-
date data describing socio-demographic, economical in-
frastructure at a specific location, e.g. number of homes
and residents, retail turnover for different branches of
trade, discretionary buying power of a region or number
and type of retailers, as well as internal microscopic data
describing economical and technical figures of existing
stores, e.g. kind of assortment, configuration/equipment
components, year of last redecoration, sales volumes
for different periods, or sales area. A total of 26 input
variables is given. We are interested in sales volumes
of a specific product line. They are partitioned in three
classes corresponding to possible decisions concerning
location policy:

• high: establish new store/continue business,
• medium: analyze location more detailed, e.g. as-

sortment or in-store design,
• low: do not establish new store/shut down store.

The task is to classify locations and stores, that are
described in numerical patterns. Furthermore, interpre-
tation of classification results should lead to decisions
on assortment and in-store design for upgrading a store.

B. Computational Experiment

Data are pre-partitioned for large, medium and
small cities. Class memberships differ for each type of
city, because decision rules and definitions of ’high’,
’medium’ or ’low’ sales volumes differ. For each class
approximately the same number of examples is avail-
able. Disjoint data sets are randomly selected from
entire data for learning (roughly 40-70 % of available
records), validation (5-25 %) and out-of-sample gen-
eralization tests (the rest). Different constellations are
used for several experiments in order to get generalized

results for estimation of the methods’ performance. For
example, 1250 data records are available for large cities.
They are separated in 940 (840, 740) records forming
the learning set, 220 (270, 320) forming the validation
set and 90 (140, 190) forming the generalization set.

Standard PNN, standard LVQ and basic exten-
sions (e.g. conscience or turned off repulsion in the
early learning phase) are computed as implemented
within the commercial software NeuralWorks Profes-
sional II/Plus with a single PC providing benchmark
results. PNN is tested with the hold-one-out method
on learning and validation data sets with variations
of σ in [0.025,0.05, . . . ,0.95]. Each LVQ is initialized
with 4 different random seeds leading to alternative
reproducible starting positions of CVs. The number of
CVs is approximately set to 5%, 10%, . . . 25% of the
number of learning examples. A standard early stopping
rule with variation of its parameters is used in order
to avoid overfitting from learning data. Alternatively,
variations in fixed numbers of iterations (10/100/500
times the size of the learning set) are analyzed. All
26 input variables are used. Learning schedules, i.e.
sequences of Kohonen’s standard algorithms, scaling of
input variables and other parameters are taken with stan-
dard adjustments recommended in the documentation of
NeuralWorks or pre-set by the program.

In case of GA-LVQ and GA-PNN, computational
experiments are performed on a Pentium-PC-network
with one server and up to 60 clients. Various fitness
functions based on classification rates are applied to
validation data. Variants with binary genetic codes for
active/inactive input neurons and decimal codes for
gradual activity and resulting weighted input values
are tested. For LVQ, early stopping, fixed numbers of
iterations are evaluated as well as proportional complex-
ity costs. A population size of 200 is chosen, derived
from results of pre-tests. An elitist selection, that always
carries over the best net into the next population, is used.

C. Results

The results of GA-LVQ dominate the results of
manually adjusted LVQs, GA-PNN dominates standard
PNN. GA-LVQ and GA-PNN provide results on the
same level without clear dominance of one approach.
The same can be noticed for PNN and LVQ. While
results of GA-PNN are slightly higher than results of
GA-PNN, GA-LVQ provides results with a little lower
variance. Within of GA-LVQ and GA-PNN, results
show no favorite fitness function. All classification rates,
especially theMCR on generalization data, are in the
same satisfying order of magnitude for all three types of
city (see Table I, showing results from those nets that are
selected for generalization tests due to their promising
results on learning and validation data.). Results of the
top 10 % of the nets (in respect ofMCR on validation



Table I: MCR for generalization data (min/max, group
of ’best’ nets); c: conscience, nr: no repulsion

Type of city Small Medium Large
MCR[%] min max min max min max

LVQ c & LVQ1 & LVQ2 57.7 71.1 50.1 60.7 54.2 58.8
LVQ c & nr & LVQ2 58.4 71.6 50.1 64.1 57.2 59.4
GA-LVQ 68.6 69.7 69.9 71.7 70.0 71.8
PNN (bestσ in [0.25 . . . 0.4]) 60.2 68.2 63.6 67.3 63.3 68.9
GA-PNN 66.4 71.2 67.271.8 68.7 72.2

data) show only a slight higher minimumMCR on
generalization data for the manually adjusted nets (up
to seven basis points). Even those results are not in
the range of the results of GA-LVQ and GA-PNN.
As expected, the fitness charts of GA-LVQ and GA-
PNN show a mixture between Fig. 2(a) and Fig. 2(b)
for hold-out data rather than a perfect shaped s-curve.
The fitness slightly decreases and the variance from
high to low rank increases. On the other hand, charts
of classification rates of conventionally developed nets
clearly tend to be similar to Fig. 2(b) showing an almost
horizontal scatter plot for generalization data. Thus,
classification rates on validation data give less or no
information about the quality of the nets. Therefore, a
systematic selection of a net that generalizes well and
reliably is impossible.

For GA-LVQ, between 7 and 16, for GA-PNN be-
tween 6 and 14 input variables are weighted with 0,
the half of the rest is weighted with 0.5. Finer codings
have no observable impact on results. For GA-LVQ,
the number of hidden neurons depends on the number
of used variables. It is in the wide range from 30 to
108. Using the non-zero-weighted inputs as full inputs
for NeuralWorks shows inferior or similar results, but
no improvement at all.

D. Analysis and Interpretation

A classification result supports a decision on a lo-
cation directly. Furthermore, it allows answering the
following interesting questions:

• What are the main properties of a store making it
a member of a special class? Which decisions on
in-store design influence sales volume?

• Which properties of a location have impact on a
store’s class of sales volume?

• Which potential for development does a store have?
How can this potential be used advantageously?

The basic idea with distance based classifiers is the
interpretation of CVs and distances between them and
input patterns. Those weightswi j from input neuron
i to hidden neuronj that have similar values for all
hidden neurons lead only to small distance differences.
Therefore, the corresponding input features have no or
only a weak impact on the classification result. The
idea is exemplified assuming evenly relevant weights

of inputs, use of Euclidean distance and only one
hidden neuron per class. Some typical properties of a
store are given as ’format’, ’type’, ’especially equipped’
and ’duration’. Exemplified weights for analysis of are
presented in Table II. Results show strong influence of

Table II: LVQ weights, three CVs for three classes
(cut-out of exemplified data, scaled[−1; 1])

Class 1 Class 2 Class 3 Weight
Property wi1 wi2 wi3 span

Type 0.65 0.10 −0.42 1.07
Special equipment 0.41 0.25 −0.67 1.08
Format A −0.97 −0.81 −0.63 0.34
Format B −0.68 −0.88 −0.98 0.30
Format C −0.74 −0.71 −0.85 0.14
Duration −0.32 −0.09 0.07 0.39

’type’. A store with a type coded as 1 will be rather
classified belonging to class 1 with high sales volume,
a type 0 (scaled to−1) to class 3 with low sales
volume. ’Special equipment’ or a short ’duration’ –
the time period from opening or redecoration – seems
to stimulate sales. The ’format’ has less influence.
Answers for above mentioned questions can be derived
from similar considerations and what-if-analyses by
variation of certain values and computing distances for
classification. These analyses and interpretations are
not bound to usage of the proposed evolutionary net
versions. The main results are feasible since they meet
with approval of human experts involved in the topic of
retail stores and evaluation of locations.

V. Conclusions

The proposed GA-LVQ and GA-PNN show promis-
ing results for decision support in a complex economic
real-world classification problem. The results dominate
results of conventionally applied standard LVQ and
PNN. A fitness function allows control in respect of
decision maker’s goal beyond the potential of the nets’
algorithms. For LVQ, common problems like reasonable
initialization and values for learning parameters remain.
They are mitigated by an evolutionary development with
computation of a high number of nets in a parallel
PC network implementation. Within the model building
process, decisions on ANN’s topology are automated.
On the one hand the degrees of freedom concerning
parameters of neural learning are reduced, on the other
hand new ones concerning evolutionary learning arise.

Results may be improved by enhancements of the
proposed methods, e.g. application of more ANNs in a
committee with each net voting for a class –influence
of different voting rules can be studied, combination
of different classification methods like support vector
machines or distance-based rejection of classification.
Furthermore, the influence of different fitness functions
on results is an interesting research topic. An important



information for decision makers is the significance of
results. The interpretation of the distances between CVs
and the object to be evaluated may provide this infor-
mation. Further research should focus on comparison
between GA-LVQ, GA-PNN and several newer LVQ
enhancements like LVQ4 or on implementation of those
newer LVQ algorithms into GA-LVQ. Moreover, GA-
LVQ and GA-PNN should be applied to other real-
world classification problems striving for a broader
overlook and better evaluation of the methods’ overall
performance.
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